79 resultados para Salt Water Intrussion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turfgrasses range from extremely salt sensitive to highly salt tolerant. However, the selection of a salt tolerant turf is not a 'silver bullet' solution to successful turf growth on salt-affected parklands. Interactions between factors such as cultivar, construction practices, establishment, and maintenance can be complex and should not be considered in isolation of one another. Taking this holistic approach, a study investigating cultivar evaluation for salt-affected sites also included a comparison of topsoil materials as turf underlay, as well as pre-treatment of the sod. The turf species and cultivars used in the study were: Cynodon dactylon, cultivar 'Oz Tuff (I) '; Paspalum vaginatum, cultivars 'Sea Isle 1 (I) ' and 'Velvetene (I) '; Zoysia matrella cultivar 'A-1 (I) '; and Zoysia japonica, cultivar 'Empire (I) '. The two underlay materials were compost (100%) or a sandy clay topsoil each applied above a coastal sand profile to a depth of 10 cm. Rooting depth or root dry weight did not significantly differ among turf cultivars. Compost profile treatment had significantly greater root mass than the topsoil among all turf cultivars. This higher root production was reflected by improved quality of all turf at the final evaluation. Turfgrass grown on compost had a higher normalised difference vegetation index (NDVI), regardless of whether full sod or bare-rooted turfgrass was used. The use of a quality underlay was paramount to the successful growth of the turf cultivars investigated. While each cultivar had superior performance in sub-optimal conditions, the key to success was the selection of the right species and cultivar for each situation combined with proper establishment and maintenance of each turf grass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pratylenchus thornei is a major pathogen of wheat crops in the northern grain region of Eastern Australia with an estimated annual yield loss of $38 million. Damaged crops show symptoms of water and nutrient stress that suggest uptake is significantly affected. In order to understand the mechanisms involved in reducing water uptake and consequently plant yield, detailed measurements of water extraction and leaf area were conducted on a range of wheat cultivars with differing levels of tolerance and resistance to P. thornei.