81 resultados para Production management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic variability in dryland production environments (E) generates variable yield and crop production risks. Optimal combinations of genotype (G) and management (M) depend strongly on E and thus vary among sites and seasons. Traditional crop improvement seeks broadly adapted genotypes to give best average performance under a standard management regime across the entire production region, with some subsequent manipulation of management regionally in response to average local environmental conditions. This process does not search the full spectrum of potential G × M × E combinations forming the adaptation landscape. Here we examine the potential value (relative to the conventional, broad adaptation approach) of exploiting specific adaptation arising from G × M × E. We present an in-silico analysis for sorghum production in Australia using the APSIM sorghum model. Crop design (G × M) is optimised for subsets of locations within the production region (specific adaptation) and is compared with the optimum G across all environments with locally modified M (broad adaptation). We find that geographic subregions that have frequencies of major environment types substantially different from that for the entire production region show greatest advantage for specific adaptation. Although the specific adaptation approach confers yield and production risk advantages at industry scale, even greater benefits should be achievable with better predictors of environment-type likelihood than that conferred by location alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rare opportunity to test hypotheses about potential fishery benefits of large-scale closures was initiated in July 2004 when an additional 28.4% of the 348 000 km2 Great Barrier Reef (GBR) region of Queensland, Australia was closed to all fishing. Advice to the Australian and Queensland governments that supported this initiative predicted these additional closures would generate minimal (10%) initial reductions in both catch and landed value within the GBR area, with recovery of catches becoming apparent after three years. To test these predictions, commercial fisheries data from the GBR area and from the two adjacent (non-GBR) areas of Queensland were compared for the periods immediately before and after the closures were implemented. The observed means for total annual catch and value within the GBR declined from pre-closure (2000–2003) levels of 12 780 Mg and Australian $160 million, to initial post-closure (2005–2008) levels of 8143 Mg and $102 million; decreases of 35% and 36% respectively. Because the reference areas in the non-GBR had minimal changes in catch and value, the beyond-BACI (before, after, control, impact) analyses estimated initial net reductions within the GBR of 35% for both total catch and value. There was no evidence of recovery in total catch levels or any comparative improvement in catch rates within the GBR nine years after implementation. These results are not consistent with the advice to governments that the closures would have minimal initial impacts and rapidly generate benefits to fisheries in the GBR through increased juvenile recruitment and adult spillovers. Instead, the absence of evidence of recovery in catches to date currently supports an alternative hypothesis that where there is already effective fisheries management, the closing of areas to all fishing will generate reductions in overall catches similar to the percentage of the fished area that is closed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), is a major environmental weed in Australia. Two forms of the weed with distinctive leaf morphology and reproductive traits, including varying fruit size, occur in Queensland, Australia. The long pod form occurs in a few localities in Queensland, while the short pod form is widely distributed in Queensland and northern part of New South Wales. This investigation aimed to evaluate germination behavior and occurrence of polyembryony (production of multiple seedlings from a single seed) in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20°C, 15/25°C, 20/30°C, 30/45°C and 25°C, representing ambient temperature conditions of the region. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from short pod plants exhibited significantly higher germination rates and higher occurrence of polyembryony than those from long pod plants. Seeds from long pod plants did not germinate at the lowest temperature of 10/20°C; in contrast, those of the short pod form germinated under this condition, albeit at a lower rate (reaching a maximum 45% germination at week 12). Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed plants in Australia, while the long pod is confined to a few localities. The results have implication in predicting future range of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of ‘wet litter’, which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality.