116 resultados para Plant enzymes
Resumo:
The aphid parasitoid Lysiphlebus testaceipes is a potentially valuable biological control agent of Aphis gossypii a major worldwide pest of cotton. One means of increasing the abundance of a biological control agent is to provide an alternative host habitat adjacent to cropping, from which they can provide pest control services in the crop. Host selection and parasitism rate of an alternative host aphid, Aphis craccivora by L. testaceipes were studied in a series of experiments that tested its host suitability relative to A. gossypii on cotton, hibiscus and mungbean. Host acceptance, as measured by number of ovipositions was much greater in A. craccivora compared to A. gossypii, while more host aphids were accepted on mungbean than cotton. When given a choice L. testaceipes attacks more 4th instar and adult stages (63% and 70%, respectively) of both hosts than 2nd instar nymphs (47%). In a switching (host choice) experiment, L. testaceipes preferentially attacked A. craccivora on mungbean over A. gossypii on cotton. Observations of parasitoid contact with A. gossypii cornicle secretion suggest it provides a useful deterrent against parasitoid attack. From these experiments it appears L. testaceipes has a preference for A. craccivora and mungbean compared to A. gossypii and cotton, in this respect using A. craccivora and mungbean as alternative habitat may not work as the parasitoid is unlikely to switch away from its preferred host. © 2012.
Resumo:
Understanding and describing Australian flavor has proved to be a challenge for marketers of native foods because of the diversity of unique flavor signatures exhibited. Descriptive analysis techniques were applied, using a panel of 11 experienced judges, to define and articulate the sensory properties of 18 key commercial Australian native plant foods and ingredients including fruits, herbs and spices. Quantitative descriptive data were transformed into concise and accurate verbal descriptions for each of the species. The sensory language developed during the vocabulary development panel sessions was combined, categorized and ordered to develop a sensory lexicon specific for the genre. The language developed to describe the foods and ingredients was diverse and distinctly Australian including aromas such as musk, rosella, citrus and spiced tea to eucalypt, bush scrub, fresh beetroot and wheat biscuit. Practical Applications This work provides a clear, useful means of characterizing and accurately describing the flavors of Australian native plant foods and ingredients. This information has been communicated to the native food industry, chefs, formulators, food technologists and flavor experts, and provides knowledge that will assist the wider food industry to successfully develop flavor blends and produce food products from native food ingredients. It is anticipated that extension of this information to both the local and international food markets will stimulate a renewed interest in Australian native ingredients and open new market opportunities for the industry. The data developed by this research have also formed the basis of quality control targets for emerging native foods and ingredients.
Resumo:
Propagation of subtropical eucalypts is often limited by low production of rooted cuttings in winter. This study tested whether changing the temperature of Corymbia citriodora and Eucalyptus dunnii stock plants from 28/23A degrees C (day/night) to 18/13A degrees C, 23/18A degrees C or 33/28A degrees C affected the production of cuttings by stock plants, the concentrations of Ca and other nutrients in cuttings, and the subsequent percentages of cuttings that formed roots. Optimal temperatures for shoot production were 33/28A degrees C and 28/23A degrees C, with lower temperatures reducing the number of harvested cuttings. Stock plant temperature regulated production of rooted cuttings, firstly by controlling shoot production and, secondly, by affecting the ensuing rooting percentage. Shoot production was the primary factor regulating rooted cutting production by C. citriodora, but both shoot production and root production were key determinants of rooted cutting production in E. dunnii. Effects of lower stock plant temperatures on rooting were not the result of reduced Ca concentration, but consistent relationships were found between adventitious root formation and B concentration. Average rooting percentages were low (1-15% for C. citriodora and 2-22% for E. dunnii) but rooted cutting production per stock plant (e.g. 25 for C. citriodora and 52 for E. dunnii over 14 weeks at 33/28A degrees C) was sufficient to establish clonal field tests for plantation forestry.
Resumo:
Rph20 is the only reported, simply inherited gene conferring moderate to high levels of adult plant resistance (APR) to leaf rust (Puccinia hordei Otth) in barley (Hordeum vulgare L.). Key parental genotypes were examined to determine the origin of Rph20 in two-rowed barley. The Dutch cultivar 'Vada' (released in the 1950s) and parents, 'Hordeum laevigatum' and 'Gull' ('Gold'), along with the related cultivar 'Emir' (a derivative of 'Delta'), were assessed for APR to P. hordei in a disease screening nursery. The marker bPb-0837-PCR, co-located with Rph20 on the short arm of chromosome 5H (5HS), was used to screen genotypes for the resistance allele, Rph20.ai. Results from phenotypic assessment and DNA analysis confirmed that Rph20 originated from the landrace 'H. laevigatum' (i.e., Hordeum vulgare subsp. vulgare). Tracing back this gene through the pedigrees of two-rowed barley cultivars, indicated that Rph20 has contributed APR to P. hordei for more than 60 years. Although there have been no reports of an Rph20-virulent pathotype, the search for alternative sources of APR should continue to avoid widespread reliance upon a single resistance factor.
Resumo:
Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.
Resumo:
Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks.
Resumo:
The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.
Resumo:
Pimelea species (or desert riceflower) are small native plants endemic to the drier inland pastoral regions of Australia, which cause a unique syndrome in grazing cattle characterised by submandibular oedema and oedema in the brisket area as a result of right-sided heart failure attributed to the toxin simplexin. Field evidence suggests that poisoning can occur through minor, inadvertent consumption of Pimelea plant material, but the minimum simplexin intake required to induce Pimelea poisoning is not known. In this study, mild Pimelea poisoning was induced at a daily dose of 12.5 mg Pimelea/kg bodyweight per day, equivalent to 2.5 µg simplexin/kg bodyweight per day, demonstrating the high potential toxicity of these plant species. Effects in all animals diminished with prolonged low dose feeding and we postulate that these animals developed mechanisms for detoxifying simplexin, 1, possibly through rumen bacteria adaptation or activation of liver enzymes.
Resumo:
Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments.
Resumo:
For many years Australian forest pathologists and other scientists have dreaded the arrival of the rust fungus, Puccinia psidii, commonly known as Myrtle Rust, in Australia. This pathogen eventually did arrive in that country and was first detected in New South Wales in 2010 on Willow Myrtle (Agonis flexuosa). It is generally accepted that it entered the country on an ornamental Myrtales* host brought in by a private nursery. Despite efforts to eradicate the invasive rust, it has already spread widely, now occurring along the east coast of Australia, from temperate areas in Victoria and southern North South Wales to tropical areas in north Queensland.
Resumo:
Anthracnose and stem end rots are the main postharvest diseases affecting mangoes in Australia and limiting the shelf life of fruits whenever they are not controlled. The management of these diseases has often relied on the use of fungicide applications either as field spray treatments, postharvest dips or both. Because of concerns with continuous fungicide use, other options for the sustainable management of these diseases are needed. Field trials were conducted to assess the efficacy of three plant activators for the control of these diseases over a 2-year period on 20-year old ‘R2E2’ mango trees in north Queensland. The activators evaluated were: Bion, Kasil and Mangocote. The efficacy of these activators was compared with that of a standard industry field spray program using a combination of fungicides, as well as to un¬treated controls. Conditions favoured good development of the target diseases in both years to be able to differentiate treatment effects. Kasil as a drench was as effective as the standard fungicide program on the management of anthracnose and stem end rots. Bion as foliar sprays showed similar efficacy with its effectiveness comparable with the standard spray program. Both activators had significantly less disease incidences when compared with the untreated control. The third activator, Mangocote was not very effective in controlling the target diseases. Its effect was not significantly better than the untreated controls. The results from this 2-year study suggest that plant activators can play an effective role in mango postharvest disease management. Proper timing could reduce the number of fungicide sprays in an integrated disease management program enabling sustainable yields of quality fruits without the continuous concerns of health and environmental risks from continuous reliance on fungicide use.
Resumo:
Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies.
Resumo:
The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post-flowering stress. Overseas reports of M.phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperaturexsoil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M.phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M.phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.