142 resultados para Corn ensiling
Resumo:
This project encompasses laboratory, glasshouse and field research to improve N fixation in grain and forage legumes in the northern region and assess compatability of rhizobial strains with current and new legume varieties.
Resumo:
R&D to facilitate incorporation of grain and pulse crop phases in Central Queensland irrigated cotton monoculture systems and improve profitability of regional cropping systems.
Resumo:
The principal aim of the project was to contribute to the continuing adoption of integrated pest management (IPM) by grain growers in the GRDC's northern region, specifically, the Darling Downs and Central Queensland. This project provided an ongoing commitment to the development and refinement of pest management tactics, and continued support for the grower community by raising awareness of management options and strategies for their implementation. This outcome was achieved through facilitated learning by growers and their advisers via grower group meetings, field day demonstrations, technical literature and presentations by entomologists at technical forums.
Resumo:
Australia’s northern grain-producing region is unique in that the root-lesion nematode (RLN), Pratylenchus thornei predominates. P. neglectus is also present. RLN cause substantial yield losses, particularly in wheat, but they reproduce on numerous summer and winter crops. Each nematode species prefers different crops and varieties. This project provides growers with a range of integrated management strategies to limit RLN (i.e. identify the problem, protect uninfested fields, rotate with resistant crops to keep populations low and choose tolerant crops to maximise yields). It also provides new information about soil-borne zoosporic fungi in the region.
Resumo:
Maize productivity improvement for tropical and subtropical Australia.
Resumo:
Research, development and extension to achieve the implementation of Integrated Pest Management in grains-cotton broadacre farming systems.
Resumo:
The biosecurity problem addressed was the need to understand and evaluate phosphine fumigation of cool grain (i.e. 20°C or less) as a means of controlling resistant biotypes of insect pests of stored grain which are major EPPs threatening the grain industry. The benefits of cooling and phosphine fumigation are that cooling preserves grain quality and reduces insect population growth, and phosphine kills insects and has a residue free status in all major markets. The research objectives were to: - conduct laboratory experiments on phosphine efficacy against resistant insects in cool grain, and determine times to population extinction. - conduct laboratory experiments on phosphine sorption in cool grain and quantify. - complete fumigation trials in three states (Queensland, WA and NSW) on cool grain stored insealed farm silos. - make recommendations for industry on effective phosphine fumigation of cool grain. Phosphine is used by growers and other stakeholders in the grain industry to meet domesticand international demands for insect-free grain. The project aim was to generate new information on the performance of phosphine fumigation of cool grain relevant to resistant biotypes. Effective control of resistant biotypes using phosphine to fumigate cool grain will benefit growers and other sectors of the grain industry, needing to fumigate grain in the cooler months of the year, or grain that has been cooled using aeration.
Resumo:
Flat grain beetle (FGB) is a major emergency plant pest (EPP) of stored grain in Australia. Populations of FGB have recently developed high level resistance to phosphine (the only viable fumigant available for non-quarantine use) resulting in control failures with current dosage regimes. As there is no practical alternative to phosphine, failure to control FGB with phosphine places at risk market access for Australian grain worth up to $7 billion in annual trade. Therefore there is an urgent need to develop appropriate phosphine fumigation protocols to eradicate outbreaks of strongly resistant FGB. Research outcomes: - Characterisation of high resistance to phosphine in flat grain beetles (FGB) for the first time internationally. - Establishment of fumigation protocols and an eradication strategy that will enable industry to eradicate infestations of phosphine-resistant flat grain beetle and prevent or delay further selection for resistance to phosphine. - Development of a rapid test to detect highly resistant FGB. -Facilitate continued market access of Australian grain.
Resumo:
Resistance to phosphine in target pests threatens market access for Australian grain. While the grains industry is now attempting to develop an effective and sustainable strategy to manage this resistance, action is severely limited by significant gaps in our knowledge of the key ecological factors that influence the development of resistance. There is a need to research this information as a foundation for a rational approach to managing phosphine resistance in the Australian grains industry. Research outcomes: The project has provided critical research methodologies and preliminary data to fill the large gaps in our knowledge of the ecology of two key pests, Rhyzopertha dominica and Tribolium castaneum, and how this may drive the development of phosphine resistance. This information will contribute to the groundwork for future research needed to provide a scientific basis for a rational resistance management strategy.
Resumo:
Broadscale irrigation is a major land use in many of the priority neighbourhood catchments (45,218 hectares in Central Highlands and Dawson) and there is a requirement to provide technical support to sub-regional group field officers and landholders in these priority catchments. This technical support will assist field staff and land managers to identify and implement appropriate, sustainable technologies and management practices.
Resumo:
Development and evaluation of high yielding feed wheat grermplasm.
Resumo:
Natural Resource Management project developing reources and supporting best practice management for irrigated cotton and grain growers in Queensland.
Resumo:
The wheat grain industry is Australia's second largest agricultural export commodity. There is an increasing demand for accurate, objective and near real-time crop production information by industry. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to capture reflectance over large areas at acceptable pixel scale, cost and accuracy. The use of multi-temporal MODIS-enhanced vegetation index (EVI) imagery to determine crop area was investigated in this article. Here the rigour of the harmonic analysis of time-series (HANTS) and early-season metric approaches was assessed when extrapolating over the entire Queensland (QLD) cropping region for the 2005 and 2006 seasons. Early-season crop area estimates, at least 4 months before harvest, produced high accuracy at pixel and regional scales with percent errors of -8.6% and -26% for the 2005 and 2006 seasons, respectively. In discriminating among crops at pixel and regional scale, the HANTS approach showed high accuracy. The errors for specific area estimates for wheat, barley and chickpea were 9.9%, -5.2% and 10.9% (for 2005) and -2.8%, -78% and 64% (for 2006), respectively. Area estimates of total winter crop, wheat, barley and chickpea resulted in coefficient of determination (R(2)) values of 0.92, 0.89, 0.82 and 0.52, when contrasted against the actual shire-scale data. A significantly high coefficient of determination (0.87) was achieved for total winter crop area estimates in August across all shires for the 2006 season. Furthermore, the HANTS approach showed high accuracy in discriminating cropping area from non-cropping area and highlighted the need for accurate and up-to-date land use maps. The extrapolability of these approaches to determine total and specific winter crop area estimates, well before flowering, showed good utility across larger areas and seasons. Hence, it is envisaged that this technology might be transferable to different regions across Australia.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
Three experiments were conducted to determine liveweight (W) gain and feed and water intake of weaned Bali cattle offered a range of feed types. In each experiment, 18 weaned entire male Bali cattle were allocated to three treatment groups in a completely randomised block design, with six replicates (animals) per treatment. The dietary treatments were: Experiment 1, native grass fed ad libitum, native grass supplemented with rice bran at 10 g dry matter (DM)/kg W.day and native grass supplemented with a mixture of rice bran and copra meal in equal proportions fed at 10 g DM/kg W.day; Experiment 2, elephant grass hay fed ad libitum, elephant grass supplemented with gliricidia at 10 g DM/kg W.day, and gliricidia fed ad libitum; and Experiment 3, corn stover fed ad libitum, corn stover supplemented with gliricidia at 10 g DM/kg W.day, and corn stover supplemented with rice bran/copra meal in equal amounts (w/w) at 10 g DM/kg W.day. Each experiment was 10 weeks in duration, consisting of a 2-week preliminary period for adaptation to diets and an 8-week experimental period for the measurement of W change, feed and water intake and digestibility of the diet. Growth rates of 6-12-month-old, entire male Bali cattle fed a range of local diets ranged from 0.10 and 0.40 kg/day. Lowest growth rates occurred when the cattle were given the basal diets of native grass (0.104 kg/day), elephant grass (0.174 kg/day) and corn stover (0.232 kg/day). With the addition of supplements such as rice bran, rice bran/copra meal or gliricidia to these basal diets liveweight gains increased to between 0.225 and 0.402 kg/day. Forage DM intake was reduced with these supplements by on average 22.6% while total DM intake was increased by an average of 10.5%. The growth rate on gliricidia alone was 0.269 kg/day and feed DM intake was 28.0 g/kg W.day. Water intake was not affected by supplement type or intake. In conclusion, inclusion of small quantities of locally available, high quality feed supplements provide small-holder farmers with the potential to increase growth rates of Bali calves from 0.1 to 0.2 kg/day, under prevailing feeding scenarios, to over 0.4 kg/day.