158 resultados para Ballast control
Resumo:
Navua sedge, a member of the Cyperaceae family, is an aggressive weed of pastures in Fiji, Sri Lanka, Malay Peninsula, Vanuatu, Samoa, Solomons, and Tahiti and is now a weed of pastures and roadsides in north Queensland, Australia. Primarily restricted to areas with an annual rainfall exceeding 2500 mm, Navua sedge is capable of forming dense stands smothering many tropical pasture species. Seventeen herbicides were field tested at three sites in north Queensland, with glyphosate, halosulfuron, hexazinone, imazapic, imazapyr, or MSMA the most effective for Navua sedge control. Environmental problems such as persistence in soil, lack of selectivity and movement off-site may occur using some herbicides at the predicted LC90 control level rates. A seasonality trial using halosulfuron (97.5 g ai/ha) gave better Navua sedge control (84%) spraying March to September than spraying at other times (50%). In a frequency trial, sequential glyphosate applications (2,160 g ae/ha) every two months was more effective for continued Navua sedge control (67%) than a single application of glyphosate (36%), though loss of ground cover would occur. In a management trial, single applications of glyphosate (2,160 to 3,570 g ae/ha) using either a rope wick, ground foliar spraying or a rotary rope wick gave 59 to 73% control, while other treatments (rotary hoe (3%), slashing (-13%) or crushing (-30%)) were less effective. In a second management trial, four monthly rotary wick applications were much more effective (98%) than four monthly crushing applications (42%). An effective management plan must include the application of regular herbicide treatments to eliminate Navua sedge seed being added to the soil seed bank. Treatments that result in seed burial, for example, discing are likely to prolong seed persistence and should be avoided. The sprouting activity of vegetative propagules and root fragmentation needs to also be considered when selecting control options.
Resumo:
Context: For over 100 years, control efforts have been unable to stop rabbits causing damage to cattle production and native plants and animals on large properties in arid parts of Australia. Warren destruction by ripping has shown promise, but doubts about long-term success and the perceived expense of treating vast areas have led to this technique not being commonly used. Aims: This study measured the long-term reduction in rabbit activity and calculated the potential cost saving associated with treating just the areas where rabbits are believed to survive drought. Wealso considered whether ripping should be used in a full-scale rabbit control program on a property where rabbits have been exceptionally resilient to the influence of biological and other control measures. Methods: Rabbits were counted along spotlight transects before warrens were ripped and during the two years after ripping, in treated and untreated plots. Rabbit activity was recorded to determine the immediate and long-term impact of ripping, up to seven years after treatment. The costs of ripping warrens within different distances from drought refuge areas were calculated. Key results: Destroying rabbit warrens by ripping caused an immediate reduction in rabbit activity and there were still 98% fewer rabbits counted by spotlight in ripped plots five months after ripping. Seven years after ripping no active warrens were found in ripped plots, whereas 57% of warrens in unripped plots showed signs of rabbit activity. The cost of ripping only the areas where rabbits were likely to seek refuge from drought was calculated to be less than 4%of the cost of ripping all warrens on the property. Conclusions: Destroying rabbit warrens by ripping is a very effective way of reducing rabbit numbers on large properties in arid Australia. Ripping should commence in areas used by rabbits to survive drought. It is possible that no further ripping will be required. Implications: Strategic destruction of warrens in drought refuge areas could provide an alternative to biological control for managing rabbits on large properties in the Australian arid zone.
Resumo:
Combating the spread of invasive fish is problematic, with eradication rarely possible and control options varying enormously in their effectiveness. In two small impoundments in north-eastern Australia, an electrofishing removal program was conducted to control an invasive tilapia population. We hypothesised that electrofishing would reduce the population density of Oreochromis mossambicus (Mozambique tilapia), to limit the risk of downstream spread into areas of high conservation value. We sampled by electrofishing monthly for 33 months. Over this period, there was an 87% decline in catch per unit effort (CPUE) of mature fish, coupled with a corresponding increase of 366% in the number of juveniles, suggesting a density-dependent response in the stock-recruitment relationship for the population. Temperature was inversely related to CPUE (r=0.43, lag=10 days), implying greater electrofishing efficiency in cooler months. The reduction in breeding stock is likely to reduce the risk of spread and render the population vulnerable to other control measures such as netting and/or biological control. Importantly, the current study suggests routine electrofishing may be a useful control tool for invasive fish in small impoundments when the use of more destructive techniques, such as piscicides, is untenable.
Resumo:
This article describes research designed to determine the molasses addition rates that can control ammonia and pH in eutrophic aquaculture ponds.
Resumo:
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.
Resumo:
This report provides an overview of a series of pig- and fox-baiting research projects conducted 2005–2010. It is intended to collate and summarise the outcomes of these unpublished projects, including the completed pen and field trials, and provide recommendations for future research. This review will provide a useful reference document to support further research.
Resumo:
South African citrus thrips (Scirtothrips aurantii) established adventitiously in Australia. Although it is a major horticultural pest in Africa, it is now advocated as a possible biological control agent against Bryophyllum delagoense Eckl. & Zeyh. (Crassulaceae). To evaluate the biocontrol potential of S. aurantii a two year field study was conducted on the western Darling Downs of southern Queensland. Imidacloprid insecticide was applied to two quadrats at each of 18 field sites to assess, in the absence of S. aurantii, the persistence of individual plants and to quantify propagule production and recruitment by this declared weed. A third quadrat was left, as a control, to be infested naturally by S. aurantii. When released from herbivory by thrips in the field, plants grew significantly more, flowered more, and were significantly more fecund than plants in the quadrats with S. aurantii. Increases in growth and fecundity translated into significantly increased plant numbers but not increased recruitment. Recruitment even declined in experimental quadrats, through the indirect effects of releasing plants from herbivory. Field sampling also revealed that S. aurantii may be sensitive to seasonal climatic fluctuations. These and other local climatic influences may limit the biological control potential of the insect.
Resumo:
Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.
Resumo:
Phage therapy is becoming increasingly important as a means of eradicating or controlling microbial populations and has been raised as a potential strategy to reduce methane emissions from ruminants. To date, very little is currently known about phages which may infect the methane-producing archaeal strains (methanogens) dominant within the rumen of Australian cattle, such as the Methanobrevibacter ruminantium. This project aimed to assemble a collection of phages to be employed in phage therapy. A range of animal-derived and environmental source samples were tested using culture-based methodology, however no lytic phages of methanogens were isolated. Given the dearth of knowledge regarding phages of rumen methanogens, this project established that these naturally-occurring phages may be present in very low concentrations within the rumen and this will need to be considered in future methanogen-phage isolation investigations. The project has begun the process of developing and adapting new methodologies for detecting and examining these phages
Resumo:
This report presents a culmination of different research projects on two species of tilapia (Oreochromis mossambicus and Tilapia mariae) and provides recommendations for the future management and research of these pest fish. Feral populations of O. mossambicus and T. mariae are now widely distributed in tropical northeastern Queensland, with O. mossambicus also occurring in southeastern Queensland and river systems of Western Australia. O. mossambicus is known to have existed in impoundments in southeastern Queensland, as well as urban drains and ornamental ponds in the Townsville region of north Queensland from about the late 1970s, while T. mariae became established in some easternflowing tropical streams by the early 1990s. In Australia, feral stocks of tilapia are widely regarded as pests that potentially threaten both native fish stocks and biodiversity.
Resumo:
Cattle ticks and buffalo flies impose significant economic burdens on the Northern Australian cattle and dairy industries. With the increased temperatures expected under climate change the range of parasites such as these is likely to extend. Current control options for these ectoparasites are limited by problems associated with chemical resistance and residues. Fungal biopesticides offer a sustainable and promising alternative method of control. Laboratory and animal studies have established the potential for the fungus Metarhizium in tick control and provided data that suggests a secondary effect of buffalo fly control is possible. Small field trials are required to obtain a proof of concept for the control of ticks and buffalo flies on animals.
Resumo:
Control of Burrowing Nematodes.
Resumo:
Eggplant was identified as another fruit fly host commodity where recent changes to interstate market access requirements are causing problems for industry. The proposed research aims to develop a systems approach to meet interstate market access requirements.
Resumo:
The aim of this project is to construct a large-scale erosion control education and demonstration facility at Redland Research Station. This will be done in collaboration with the Australian turf industry (as members of the steering committee) and consultant researcher Dr Rob Loch (project partner). The project will employ a part-time industry development officer (IDO) for Turf Australia to increase engagement with the project by the target audience. The project’s main strategy is to extend the research results from HAL funded project Optimising Turf Use to Minimise Soil Erosion on Construction Sites TU08033 so that the maximum return on investment can be derived for the turf levy payers and HAL from that study.