107 resultados para AGRICULTURAL PRODUCTIVITY


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of a series of spotted gum (Corymbia citirodora) progeny trials, established in the subtropical region of Queensland, Australia, was undertaken to provide information for the development of advanced-generation breeding populations suitable for pulp production. Measurements of growth at two ages were combined with assessments of wood density and pulp yield from a selected sample of provenances to provide comparisons between provenances, to generate genetic parameter estimates and to predict genetic gain potential. Although growth at this age was moderate relative to other eucalypts, the near-infrared predictions of average wood density of 756 kg m(-3) and pulp yield of 55% indicate the species has considerable potential as a pulpwood crop. A pulp productivity breeding objective was used to identify production populations using a range of selection trait weightings to determine potential genetic gain for pulp productivity. Genetic parameters indicated (1) levels of genetic control were moderate for all traits and higher for wood property traits, (2) genetic improvements could be achieved by selection among and within provenances with greater levels of improvement available from selection within populations, (3) genotype by environment interactions were negligible, (4) genetic correlations between traits were favourable, and (5) selection of volume production alone would maximise improvements in pulp productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 130,000 ha of hardwood plantations have been established in north-eastern Australia in the last 15 years. As a result of poor taxa selection approximately 25,000 ha have failed due to drought, pest and disease or extreme weather events (drought and cyclones). Given the predicted impacts of climate change in north-eastern Australia (reduced rainfall, increased temperatures and an increase in extreme weather conditions, particularly drought, storms and cyclones), selection of the right taxa for plantation development is even more critical as the taxon planted needs to be able to perform well under the environments experienced at planting as well as those that may develop over in 30 years time as a result of changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Nino Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major objective of this experiment was to identify optimum plant population densities for different maize maturity groups depending on the environments’ potential and identify situations that reduce risk of crop failures while maximizing opportunities for better yield when weather conditions are good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns about excessive sediment loads entering the Great Barrier Reef (GBR) lagoon in Australia have led to a focus on improving ground cover in grazing lands. Ground cover has been identified as an important factor in reducing sediment loads, but improving ground cover has been difficult for reef stakeholders in major catchments of the GBR. To provide better information an optimising linear programming model based on paddock scale information in conjunction with land type mapping was developed for the Fitzroy, the largest of the GBR catchments. This identifies at a catchment scale which land types allow the most sediment reduction to be achieved at least cost. The results suggest that from the five land types modelled, the lower productivity land types present the cheapest option for sediment reductions. The study allows more informed decision making for natural resource management organisations to target investments. The analysis highlights the importance of efficient allocation of natural resource management funds in achieving sediment reductions through targeted land type investments. © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plastic high tunnels on the performance of two strawberry (Fragaria ×ananassa) cultivars (Festival and Rubygem) and two breeding lines was studied in southeastern Queensland, Australia, over 2 years. Production in this area is affected by rain, with direct damage to the fruit and the development of fruit disease before harvest. The main objective of the study was to determine whether plants growing under tunnels had less rain damage, a lower incidence of disease, and higher yields than plants growing outdoors. Plants growing under the tunnels or outdoors had at best only small differences in leaf, crown, root, and flower and immature fruit dry weight. These responses were associated with relatively similar temperatures and relative humidities in the two growing environments. Marketable yields were 38% higher under the tunnels compared with yields outdoors in year 1, and 24% higher in year 2, mainly due to less rain damage. There were only small differences in the incidences of grey mold (Botrytis cinerea) and small and misshaped fruit in the plants growing under the tunnels and outdoors. There were also only small differences in postharvest quality, total soluble solids, and titratable acidity between the two environments. These results highlight the potential of plastic high tunnels for strawberry plants growing in subtropical areas that receive significant rainfall during the production season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted over 5 years to understand the seasonal phenology of bare-rooted ?Festival? strawberry plants (Fragaria ?ananassa) growing at Nambour in southeastern Queensland, Australia. Yields ranged from 661 to 966 g/plant, and average seasonal fruit fresh weight ranged from 15 to 18 g. The growth of the leaves, crowns, roots, flowers and fruit over time followed a linear or sigmoid pattern. Maximum values of leaf, crown and root dry weight towards the end of the growing season about 190 days after planting were 30, 15 and 7 g/plant, respectively. The rates of leaf and crown growth were lower than those achieved in California under a Mediterranean climate. There were strong relationships between the allocation of dry matter to the leaves, crowns and roots and plant dry weight. Allocation to the leaves, and especially to the crowns and roots, declined as the plants grew. The number of fruit/plant increased initially over time with a decline later in the season. Average fruit fresh weight was generally higher early in the season and then declined as fruit production increased. There were strong relationships between the growth of the whole plant and the growth of the flowers and immature fruit, and leaf expansion, across the growing season and across the 5 different years. These results indicate that seasonal growth and potential productivity were strongly linked to the expansion of the leaves in this environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which low temperature affects flowering and fruit set of grapevines are poorly understood, as is the specific response of the grapevine root system and inflorescence to low temperature effects that reduce fruit set. This study aimed to determine the responses of the root system and inflorescence of the grapevine 'Chardonnay' to low temperature (10 degrees C) during flowering, and considered the possible mechanisms of low temperature effects on those parts. Temperature treatments of 10 degrees C or 20 degrees C were imposed to potted 'Chardonnay' grapevines in a glasshouse for up to two weeks during the early stages of flowering. When the root system alone was exposed to 10 degrees C (with the rest of the plant at 20 degrees C) during flowering, the number of attached berries and percentage fruit set were significantly reduced by 50 % than when the root system alone was exposed to 20 degrees C. Whereas, exposure of the inflorescence alone to 10 degrees C (with the rest of the plant at 20 degrees C) delayed flowering, allowed rachis to grow longer, and increased both the number of attached berries (from 22 to 62 per vine) and fruit set (from 8 % to, 20 %), than when the inflorescence alone was exposed to 20 degrees C. This study will enhance our understanding of the possible mechanisms of low temperature effects on grapevine fruit set and productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change