69 resultados para rust
Resumo:
Breaches of biosecurity, leading to incursions by invasive species, have the potential to cause substantial economic, social and environmental losses, including drastic reduction in biodiversity. It is argued that improving biosecurity reduces risk to biodiversity, while maintaining stable ecosystems through biodiversity can be a safeguard against biosecurity breaches. The global costs of invasive alien species (IAS) have been estimated at around US$350 billion, while alien invertebrate and vertebrate pests and weeds are estimated to cost Australia at least $7 billion a year. A striking, current, example is the incursion by Myrtle Rust (Puccinia psidii) an organism which can infect all members of the Myrtaceae, the most important family in the Australian flora. Myrtle rust was first detected on a property on the central coast of New South Wales in late April 2010. Two years later the disease has been detected in numerous locations in Queensland and New South Wales ranging from commercial plant nurseries and public amenities to large areas of bushland. This particular breach of biosecurity will, inevitably, diminish biodiversity of flora and fauna over large areas of the continent. Integrated pest management (IPM), an enrichment of diversity in managing invasive and other pest species, offers the best opportunity to address problems such as these. Australia's response to increasing biosecurity risk is comprehensive and includes national networking of scientists engaged in a complex program of biosecurity research and development, including studies of IPM. This network is being enhanced by the development of international linkages.
Resumo:
Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.
Resumo:
This report presents the process and outcomes of a five year project, which employed genetics and breeding approach for integrating disease resistance,agronomy and quality traits that enhances sustainable productivity improvement in sweet corn production. The report outlines a molecular markers based approach to introgress quantitative traits loci that are believed to contribute to resistance to downy mildew, a potentially devastating disease that threatens sweet corn and other similar crops. It also details the approach followed to integrate resistances for other major diseases such as southern rust (caused by Puccinia polysora Underw), Northern Corn Leaf Blight (Exserohilum turcicum) with improved agronomy and eating quality. The report explains the importance of heterosis (hybrid vigour) and combining ability in the development of useful sweet corn hybrids. It also explains the relevance of parental performance to predict its breeding value and the performance of its hybrids.
Resumo:
Puccinia psidii, the causal agent of myrtle rust, was first recorded from Latin America more than 100 years ago. It occurs on many native species of Myrtaceae in Latin America and also infects non-native plantation-grown Eucalyptus species in the region. The pathogen has gradually spread to new areas including Australia and most recently South Africa. The aim of this study was to consider the susceptibility of selected Eucalyptus genotypes, particularly those of interest to South African forestry, to infection by P. psidii. In addition, risk maps were compiled based on suitable climatic conditions and the occurrence of potential susceptible tree species. This made it possible to identify the season when P. psidii would be most likely to infect and to define the geographic areas where the rust disease would be most likely to establish in South Africa. As expected, variation in susceptibility was observed between eucalypt genotypes tested. Importantly, species commonly planted in South Africa show good potential for yielding disease-tolerant material for future planting. Myrtle rust is predicted to be more common in spring and summer. Coastal areas, as well as areas in South Africa with subtropical climates, are more conducive to outbreaks of the pathogen.
Resumo:
Flight directionality of the rust-red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), was investigated under glasshouse and field conditions using sticky traps placed around dense experimental infestations of T. castaneum derived from field-collected samples. Although beetles of this species are known to fly quite readily, information on flight of beetles away from grain resources is limited. Under still glasshouse conditions, T. castaneum does not demonstrate strong horizontal or vertical trajectories in their initial flight behaviour. Flight was significantly directional in half of the replicates, but trapped beetles were only weakly concentrated around the mean direction of flight. In the field, by contrast, emigration of T. castaneum was strongly directional soon after flight initiation. The mean vector lengths were generally >0.5 which indicates that trapped beetles were strongly concentrated around the calculated mean flight direction. A circular-circular regression of mean flight vs. mean downwind direction suggested that flight direction was generally correlated with downwind direction. The mean height at which T. castaneum individuals initially flew was 115.4 ± 7.0 cm, with 58.3% of beetles caught no more than 1 m above the ground. The height at which beetles were trapped did not correlate with wind speed at the time of sampling, but the data do indicate that wind speed significantly affected T. castaneum flight initiation, because no beetles (or very few; no more than three) were trapped in the field when the mean wind speed was above 3 m s−1. This study thus demonstrates that wind speed and direction are both important aspects of flight behaviour of T. castaneum, and therefore of the spatio-temporal dynamics of this species.
Resumo:
Endoraecium is a genus of rust fungi that infects several species of Acacia in Australia, South-East Asia and Hawaii. This study investigated the systematics of Endoraecium from 55 specimens in Australia based on a combined morphological and molecular approach. Phylogenetic analyses were conducted on partitioned datasets of loci from ribosomal and mitochondrial DNA. The recovered molecular phylogeny supported a recently published taxonomy based on morphology and host range that divided Endoraecium digitatum into five species. Spore morphology is synapomorphic and there is evidence Endoraecium co-evolved with its Acacia hosts. The broad host ranges of E. digitatum, E. parvum, E. phyllodiorum and E. violae-faustiae are revised in light of this study, and nine new species of Endoraecium are described from Australia based on host taxonomy, morphology and phylogenetic concordance.
Resumo:
Puccinia psidii (Myrtle rust) is an emerging pathogen that has a wide host range in the Myrtaceae family; it continues to show an increase in geographic range and is considered to be a significant threat to Myrtaceae plants worldwide. In this study, we describe the development and validation of three novel real-time polymerase reaction (qPCR) assays using ribosomal DNA and β-tubulin gene sequences to detect P. psidii. All qPCR assays were able to detect P. psidii DNA extracted from urediniospores and from infected plants, including asymptomatic leaf tissues. Depending on the gene target, qPCR was able to detect down to 0.011 pg of P. psidii DNA. The most optimum qPCR assay was shown to be highly specific, repeatable, and reproducible following testing using different qPCR reagents and real-time PCR platforms in different laboratories. In addition, a duplex qPCR assay was developed to allow coamplification of the cytochrome oxidase gene from host plants for use as an internal PCR control. The most optimum qPCR assay proved to be faster and more sensitive than the previously published nested PCR assay and will be particularly useful for high-throughput testing and to detect P. psidii at the early stages of infection, before the development of sporulating rust pustules.
Resumo:
Biological control of weeds in Vanuatu began in 1935, with the introduction of the tingid Teleonemia scrupulosa to control Lantana camara. To date, nine biological control agents have been intentionally introduced to control eight weed species. Seven of these agents have established on their respective hosts while an eighth, Zygogramma bicolorata, an agent for Parthenium hysterophorus has only recently been released and establishment is unlikely. The fate of a ninth agent, Heteropsylla spinulosa, released for the control of Mimosa diplotricha is unclear. Six other biological control agents, including Epiblema strenuana which was first detected in 2014 on P. hysterophorus on Efate have spread into the country unintentionally. Control of the target weeds range from inadequate to very good. By far the most successful agent has been Calligrapha pantherina which was introduced to control Sida acuta and Sida rhombifolia. The beetle was released on 14 islands and managed to spread to at least another 10 islands where it has effectively controlled both Sida spp. Control of the two water weeds, Eichhornia crassipes by Neochetina bruchi and N. eichhorniae and Pistia stratiotes by Neohydronomus affinis, has also been fairly good in most areas. Two agents, T. scrupulosa and Uroplata girardi, were released on L. camara, and four other agents have been found on the weed, but L. camara is still not under adequate control. The rust Puccinia spegazzinii was first released on Mikania micrantha in 2012 and successfully established. Anecdotal evidence suggests that it is having an impact on M. micrantha, but detailed monitoring is required to determine its overall impact. Future prospects for weed biological control in Vanuatu are positive, with the expected greater spread of recently released agents and the introduction of new agents for P. hysterophorus, L. camara, Dolichandra unguis-cati and Spathodea campanulata.