101 resultados para respiratory syncytial virus
Resumo:
Hendra virus is a highly pathogenic novel paramyxovirus causing sporadic fatal infection in horses and humans in Australia. Species of fruit-bats (genus Pteropus), commonly known as flying-foxes, are the natural host of the virus. We undertook a survey of horse owners in the states of Queensland and New South Wales, Australia to assess the level of adoption of recommended risk management strategies and to identify impediments to adoption. Survey questionnaires were completed by 1431 respondents from the target states, and from a spectrum of industry sectors. Hendra virus knowledge varied with sector, but was generally limited, with only 13% of respondents rating their level of knowledge as high or very high. The majority of respondents (63%) had seen their state’s Hendra virus information for horse owners, and a similar proportion found the information useful. Fifty-six percent of respondents thought it moderately, very or extremely likely that a Hendra virus case could occur in their area, yet only 37% said they would consider Hendra virus if their horse was sick. Only 13% of respondents stabled their horses overnight, although another 24% said it would be easy or very easy to do so, but hadn’t done so. Only 13% and 15% of respondents respectively had horse feed bins and water points under solid cover. Responses varied significantly with state, likely reflecting different Hendra virus history. The survey identified inconsistent awareness and/or adoption of available knowledge, confusion in relation to Hendra virus risk perception, with both over-and under-estimation of true risk, and lag in the uptake of recommended risk minimisation strategies, even when these were readily implementable. However, we also identified frustration and potential alienation by horse owners who found the recommended strategies impractical, onerous and prohibitively expensive. The insights gained from this survey have broader application to other complex risk-management scenarios.
Resumo:
Nipah virus causes periodic livestock and human disease with high case fatality rate, and consequent major economic, social and psychological impacts. Fruit bats of the genus Pteropus are the natural reservoir. In this study, we used real time PCR to screen the saliva and urine of P. vampyrus from North Sumatera for Nipah virus genome. A conventional reverse transcriptase (RT-PCR) assay was used on provisionally positive samples to corroborate findings. This is the first report of Nipah virus detection in P. vampyrus in Sumatera, Indonesia.
Resumo:
The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses.
Resumo:
Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature
Resumo:
Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration. As an alternative hypothesis, we explore the role of recrudescence in persistence of Hendra virus in flying-fox populations via computer simulation using a model that integrates published information on the ecology of flying-foxes, and the ecology and epidemiology of Hendra virus. Simulated infection patterns agree with infection patterns observed in the field and suggest that Hendra virus could be maintained in an isolated flying-fox population indefinitely via periodic recrudescence in a manner indistinguishable from maintenance via periodic immigration of infected individuals. Further, post-recrudescence pulses of infectious flying-foxes provide a plausible basis for the observed seasonal clustering of equine cases. Correct understanding of the infection dynamics of Hendra virus in flying-foxes is fundamental to effectively managing risk of infection in horses and humans. Given the lack of clear empirical evidence on how the virus is maintained within populations, the role of recrudescence merits increased attention.
Resumo:
Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 [small mu ]g Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 [small mu ]g dose of E2 adsorbed to 250 [small mu ]g HMSA was compared to immunisation with Opti-E2 (50 [small mu ]g) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 [small mu ]g). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.
Resumo:
Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.
Resumo:
Cotton bunchy top virus (CBTV) and the related Cotton leafroll dwarf virus (CLRDV) have caused sporadic disease outbreaks in most cotton regions of the world. Until recently, little was known about the diversity of CBTV or its natural host range. Seven natural field hosts and one experimental host of CBTV have now been identified. These include cotton, Malva parviflora (Marshmallow weed), Abutilon theophrasti (Velvetleaf), Anoda cristata (Spurred anoda), Hibiscus sabdariffa (Rosella), Sida rhombifolia (Paddy’s lucerne), Chamaesyce hirta (Asthma plant) and Gossypium australe. These are currently the only eight known hosts of CBTV. However the virus may have a wider host range than originally thought and include further non-Malvaceae species like asthma plant (family Euphorbiaceae). There are two distinct strains of CBTV in Australia, -A and -B, which have been detected in cotton from numerous locations across almost all growing regions. From 105 samples of cotton that have been positive for CBTV, 6 were infections of strain A only, 60 were strain B only and 64 were a mixed infection of strains A and B. These results indicate the symptoms of cotton bunchy top disease are closely associated with the presence of strain CBTV-B. A diagnostic assay for Cotton leafroll dwarf virus (CLRDV - cotton blue disease) is being developed and applied successfully for the detection of CLRDV samples from Brazil and Thailand. This is the first confirmation of CLRDV from SE-Asia, which may pose an increased biosecurity threat to the Australian industry.
Resumo:
Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
Resumo:
Bovine Viral Diarrhoea Virus (BVDV) is widely distributed in cattle industries and causes significant economic losses worldwide annually. A limiting factor in the development of subunit vaccines for BVDV is the need to elicit both antibody and T-cell-mediated immunity as well as addressing the toxicity of adjuvants. In this study, we have prepared novel silica vesicles (SV) as the new generation antigen carriers and adjuvants. With small particle size of 50 nm, thin wall (similar to 6 nm), large cavity (similar to 40 nm) and large entrance size (5.9 nm for SV-100 and 16 nm for SV-140), the SV showed high loading capacity (similar to 250 mu g/mg) and controlled release of codon-optimised E2 (oE2) protein, a major immunogenic determinant of BVDV. The in vivo functionality of the system was validated in mice immunisation trials comparing oE2 plus Quil A (50 mu g of oE2 plus 10 mu g of Quil A, a conventional adjuvant) to the oE2/SV-140 (50 mu g of oE2 adsorbed to 250 mu g of SV-140) or oE2/SV-140 together with 10 mu g of Quil A. Compared to the oE2 plus Quil A, which generated BVDV specific antibody responses at a titre of 10(4), the oE2/SV-140 group induced a 10 times higher antibody response. In addition, the cell-mediated response, which is essential to recognise and eliminate the invading pathogens, was also found to be higher [1954-2628 spot forming units (SFU)/million cells] in mice immunised with oE2/SV-140 in comparison to oE2 plus Quil A (512-1369 SFU/million cells). Our study has demonstrated that SV can be used as the next-generation nanocarriers and adjuvants for enhanced veterinary vaccine delivery. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.
Resumo:
In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Summary We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.