78 resultados para grazing rotation
Resumo:
Grazing by domestic livestock is one of the most widespread uses of the rangelands of Australia. There is limited information on the effects of grazing by domestic livestock on the vertebrate fauna of Australia and the establishment of a long-term grazing experiment in north-eastern Queensland at Wambiana provided an opportunity to attempt an examination of the changes in vertebrate fauna as a consequence of the manipulation of stocking rates. The aim was to identify what the relative effects of vegetation type, stocking rate and other landscape-scale environmental factors were on the patterns recorded. Sixteen 1-ha sites were established within three replicated treatments (moderate, heavy and variable stocking rates). The sites were sampled in the wet and dry seasons in 1999-2000 (T-0) and again in 2003-04 (T-1). All paddocks of the treatments were burnt in 1999. Average annual rainfall declined markedly between the two sampling periods, which made interpretation of the data difficult. A total of 127 species of vertebrate fauna comprising five amphibian, 83 bird, 27 reptile and 12 mammal species were recorded. There was strong separation in faunal composition from T-0 to T-1 although changes in mean compositional dissimilarity between the grazing stocking rate treatments were less well defined. There was a relative change in abundance of 24 bird, four mammal and five reptile species from T-0 to T-1. The generalised linear modelling identified that, in the T-1 data, there was significant variation in the abundance of 16 species explained by the grazing and vegetation factors. This study demonstrated that vertebrate fauna assemblage did change and that these changes were attributable to the interplay between the stocking rates, the vegetation types on the sites surveyed, the burning of the experimental paddocks and the decrease in rainfall over the course of the two surveys. It is recommended that the experiment is sampled again but that the focus should be on a rapid survey of abundant taxa (i.e. birds and reptiles) to allow an increase in the frequency of sampling and replication of the data. This would help to articulate more clearly the trajectory of vertebrate change due to the relative effects of stocking rates compared with wider landscape environmental changes. Given the increasing focus on pastoral development in northern Australia, any opportunity to incorporate the collection of data on biodiversity into grazing manipulation experiments should be taken for the assessment of the effects of land management on faunal species.
Resumo:
This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient. Temperature and vapour-pressure deficit explained >80% of the variability of SOC stocks at cumulative equivalent mineral masses nominally representing 0-0.1 and 0-0.3m depths. Once detrended of climatic effects, SOC stocks were strongly influenced by total standing dry matter, soil type, and the dominant grass species. At 0-0.3m depth only, there was a weak negative association between stocking rate and climate-detrended SOC stocks, and Cell grazing was associated with smaller SOC stocks than Continuous grazing and Exclosure. In future, collection of quantitative information on stocking intensity, frequency, and duration may help to improve understanding of the effect of grazing management on SOC stocks. Further exploration of the links between grazing management and above- and below-ground biomass, perhaps inferred through remote sensing and/or simulation modelling, may assist large-area mapping of SOC stocks in northern Australia. © CSIRO 2013.
Resumo:
Historical stocking methods of continuous, season-long grazing of pastures with little account of growing conditions have caused some degradation within grazed landscapes in northern Australia. Alternative stocking methods have been implemented to address this degradation and raise the productivity and profitability of the principal livestock, cattle. Because information comparing stocking methods is limited, an evaluation was undertaken to quantify the effects of stocking methods on pastures, soils and grazing capacity. The approach was to monitor existing stocking methods on nine commercial beef properties in north and south Queensland. Environments included native and exotic pastures and eucalypt (lighter soil) and brigalow (heavier soil) land types. Breeding and growing cattle were grazed under each method. The owners/managers, formally trained in pasture and grazing management, made all management decisions affecting the study sites. Three stocking methods were compared: continuous (with rest), extensive rotation and intensive rotation (commonly referred to as 'cell grazing'). There were two or three stocking methods examined on each property: in total 21 methods (seven continuous, six extensive rotations and eight intensive rotations) were monitored over 74 paddocks, between 2006 and 2009. Pasture and soil surface measurements were made in the autumns of 2006, 2007 and 2009, while the paddock grazing was analysed from property records for the period from 2006 to 2009. The first 2 years had drought conditions (rainfall average 3.4 decile) but were followed by 2 years of above-average rainfall. There were no consistent differences between stocking methods across all sites over the 4 years for herbage mass, plant species composition, total and litter cover, or landscape function analysis (LFA) indices. There were large responses to rainfall in the last 2 years with mean herbage mass in the autumn increasing from 1970 kg DM ha(-1) in 2006-07 to 3830 kg DM ha(-1) in 2009. Over the same period, ground and litter cover and LFA indices increased. Across all sites and 4 years, mean grazing capacity was similar for the three stocking methods. There were, however, significant differences in grazing capacity between stocking methods at four sites but these differences were not consistent between stocking methods or sites. Both the continuous and intensive rotation methods supported the highest average annual grazing capacity at different sites. The results suggest that cattle producers can obtain similar ecological responses and carry similar numbers of livestock under any of the three stocking methods.
Resumo:
Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.
Resumo:
Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.
Resumo:
The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.
Resumo:
Managing large variations in herbage production, resulting from highly variable seasonal rainfall, provides a major challenge for the sustainable management of Astrebla (Mitchell grass) grasslands in Australia. A grazing study with sheep was conducted between 1984 and 2010 on an Astrebla grassland in northern Queensland to describe the effects of a range of levels of utilisation of the herbage at the end of the summer growing season (April–May in northern Australia) on the sustainability of these grasslands. In unreplicated paddocks, sheep numbers were adjusted annually to achieve 0, 10, 20, 30, 50 and 80% utilisation of the herbage mass at the end of the summer over the ensuing 12 months. Higher levels of utilisation reduced both total and Astrebla spp. herbage mass because of the effects of higher utilisation on Astrebla spp. and this effect was accentuated by drought. The tussock density of Astrebla spp. varied widely among years but with few treatment differences until 2005 when density was reduced at the 50% level of utilisation. A major change in density resulted from a large recruitment of Astrebla spp. in 1989 that influenced its density for the remainder of the study. Basal area of the tussocks fluctuated among years, with increases due to rainfall and decreases during droughts. Seasonal rainfall was more influential than level of utilisation in changes to the basal area of perennial grasses. Drought resulted in the death of Astrebla spp. tussocks and this effect was accentuated at higher levels of utilisation. A series of three grazing exclosures were used to examine the recovery of the density and basal area of Astrebla spp. after it had been reduced by 80% utilisation over the preceding 9 years. This recovery study indicated that, although grazing exclusion was useful in the recovery of Astrebla spp., above-average rainfall was the major factor driving increases in the basal area of perennial grasses. Spring values of the Southern Oscillation Index and associated rainfall probabilities were considered to have potential for understanding the dynamics of Astrebla spp. It was concluded that Astrebla grassland remained sustainable after 26 years when grazed at up to 30% utilisation, while, at 50% utilisation, they became unsustainable after 20 years. Results from this study emphasised the need to maintain the population of Astrebla spp. tussocks.
Resumo:
The occurrence of interstitial species in Astrebla grasslands in Australia are influenced by grazing and seasonal rainfall but the interactions of these two influences are complex. This paper describes three studies aimed at determining and explaining the changes in plant species richness and abundance of the interstitial species in a long-term sheep utilisation experiment in an Astrebla grassland in northern Queensland. In the first study, increasing utilisation increased the frequency of Dactyloctenium radulans (Button grass) and Brachyachne convergens (Downs couch) and reduced that of Streptoglossa adscendens (Mint bush). In the second study, seasonal rainfall variation between 1984 and 2009 resulted in large annual differences in the size of the seed banks of many species, but increasing utilisation consistently reduced the seed bank of species such as Astrebla spp. and S. adscendens and increased that of species such as B. convergens, D. radulans, Amaranthus mitchellii (Boggabri) and Boerhavia sp. (Tar vine). In the third study, the highest species richness occurred at the lightest utilisation because of the presence of a range of palatable forbs, especially legumes. Species richness was reduced as utilisation increased. Species richness in the grazing exclosure was low and similar to that at the heaviest utilisation where there was a reduction in the presence of palatable forb species. The pattern of highest species richness at the lightest grazing treatment was maintained across three sampling times, even with different amounts of seasonal rainfall, but there was a large yearly variation in both the density and frequency of many species. It was concluded that the maintenance of highest species richness at the lightest utilisation was not aligned with other data from this grazing experiment which indicated that the maximum sustainable wool production occurred at moderate utilisation.
Resumo:
Processing Australian hardwood plantations into rotary veneer can produce more acceptable marketable product recoveries compared to traditional processing techniques (e.g. sawmilling). Veneers resulting from processing trials from six commercially important Australian hardwood species were dominated by D-grade veneer. Defects such as encased knots, gum pockets, gum veins, surface roughness, splits, bark pockets, and decay impacted the final assigned grade. Four grading scenarios were adopted. The first included a change to the grade limitations for gum pockets and gum veins, while the second investigated the potential impact of effective pruning on grade recovery. Although both scenarios individually had a positive impact on achieving higher face grade veneer qualities, the third and fourth scenarios, which combined both, had a substantial impact, with relative veneer values increasing up to 18.2% using conservative calculations (scenario three) or up to 22.6% (scenario four) where some of the upgraded veneers were further upgraded to A-grade, which attracts superior value. The total change in veneer value was found to depend on the average billet diameter unless defects other than those relating to the scenarios (gum or knots) restricted the benefit of pruning and gum upgrading. This was the case for species prone to high levels of growth stress and related defects.
Resumo:
Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.
Resumo:
An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid rangelands. Livestock production is thought to increase the susceptibility of the rangelands to wind erosion by reducing vegetation cover and modifying surface soil stability. However, research is yet to quantify the impacts of grazing land management on the erodibility of the Australian rangelands, or determine how these impacts vary among land types and over time. We present a simulation analysis that links a pasture growth and animal production model (GRASP) to the Australian Land Erodibility Model (AUSLEM) to evaluate the impacts of stocking rate, stocking strategy and land condition on the erodibility of four land types in western Queensland, Australia. Our results show that declining land condition, over stocking, and using inflexible stocking strategies have potential to increase land erodibility and amplify accelerated soil erosion. However, land erodibility responses to grazing are complex and influenced by land type sensitivities to different grazing strategies and local climate characteristics. Our simulations show that land types which are more resilient to livestock grazing tend to be least susceptible to accelerated wind erosion. Increases in land erodibility are found to occur most often during climatic transitions when vegetation cover is most sensitive to grazing pressure. However, grazing effects are limited during extreme wet and dry periods when the influence of climate on vegetation cover is strongest. Our research provides the opportunity to estimate the effects of different land management practices across a range of land types, and provides a better understanding of the mechanisms of accelerated erosion resulting from pastoral activities. The approach could help further assessment of land erodibility at a broader scale notably if combined with wind erosion models.
Resumo:
Indospicine is a non-proteinogenic amino acid which occurs in Indigofera species with widespread prevalence in grazing pastures across tropical Africa, Asia, Australia, and the Americas. It accumulates in the tissues of grazing livestock after ingestion of Indigofera. It is a competitive inhibitor of arginase and causes both liver degeneration and abortion. Indospicine hepatoxicity occurs universally across animal species but the degree varies considerably between species, with dogs being particularly sensitive. The magnitude of canine sensitivity is such that ingestion of naturally indospicine-contaminated horse and camel meat has caused secondary poisoning of dogs, raising significant industry concern. Indospicine impacts on the health and production of grazing animals per se has been less widely documented. Livestock grazing Indigofera have a chronic and cumulative exposure to this toxin, with such exposure experimentally shown to induce both hepatotoxicity and embryo-lethal effects in cattle and sheep. In extensive pasture systems, where animals are not closely monitored, the resultant toxicosis may well occur after prolonged exposure but either be undetected, or even if detected not be attributable to a particular cause. Indospicine should be considered as a possible cause of animal poor performance, particularly reduced weight gain or reproductive losses, in pastures where Indigofera are prevalent.
Resumo:
Extensive cattle grazing is the dominant land use in northern Australia. It has been suggested that grazing intensity and rainfall have profound effects on the dynamics of soil nutrients in northern Australia’s semi-arid rangelands. Previous studies have found positive, neutral and negative effects of grazing pressure on soil nutrients. These inconsistencies could be due to short-term experiments that do not capture the slow dynamics of some soil nutrients and the effects of interannual variability in rainfall. In a long-term cattle grazing trial in northern Australia on Brown Sodosol–Yellow Kandosol complex, we analysed soil organic matter and mineral nitrogen in surface soils (0–10 cm depth) 11, 12 and 16 years after trial establishment on experimental plots representing moderate stocking (stocked at the long-term carrying capacity for the region) and heavy stocking (stocked at twice the long-term carrying capacity). Higher soil organic matter was found under heavy stocking, although grazing treatment had little effect on mineral and total soil nitrogen. Interannual variability had a large effect on soil mineral nitrogen, but not on soil organic matter, suggesting that soil nitrogen levels observed in this soil complex may be affected by other indirect pathways, such as climate. The effect of interannual variability in rainfall and the effects of other soil types need to be explored further.