82 resultados para fur farms
Resumo:
Development of new agricultural industries in northern Australia is seen as a way to provide food security in the face of reduced water availability in existing regions in the south. This report aims to identify some of the possible economic consequences of developing a rice industry in the Burdekin region, while there is a reduction of output in the Riverina. Annual rice production in the Riverina peaked at 1.7 M tonnes, but the long-term outlook, given climate change impacts on that region and government water buy-backs, is more likely to be less than 800,000 tonnes. Growers are highly efficient water users by international standards, but the ability to offset an anticipated reduction in water availability through further efficiency gains is limited. In recent years growers in the Riverina have diversified their farms to a greater extent and secondary production systems include beef, sheep and wheat. Production in north Queensland is in its infancy, but a potentially suitable farming system has been developed by including rice within the sugarcane system without competition and in fact contributing to the production of sugar by increasing yields and controlling weeds. The economic outcomes are estimated a large scale, dynamic, computable general equilibrium (CGE) model of the world economy (Tasman Global), scaled down to regional level. CGE models mimic the workings of the economy through a system of interdependent behavioural and accounting equations which are linked to an input-output database. When an economic shock or change is applied to a model, each of the markets adjusts according to the set of behavioural parameters which are underpinned by economic theory. In this study the model is driven by reducing production in the Riverina in accordance with relationships found between water availability and the production of rice and replacement by other crops and by increasing ride production in the Burdekin. Three scenarios were considered: • Scenario 1: Rice is grown using the fallow period between the last ratoon crop of sugarcane and the new planting. In this scenario there is no competition between rice and sugarcane • Scenario 2: Rice displaces sugarcane production • Scenario 3: Rice is grown on additional land and does not compete with sugarcane. Two time periods were used, 2030 and 2070, which are the conventional time points to consider climate change impacts. Under scenario 1, real economic output declines in the Riverina by $45 million in 2030 and by $139 million in 2070. This is only partially offset by the increased real economic output in the Burdekin of $35 million and $131 million respectively.
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.
Resumo:
Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.
Resumo:
BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions. © 2013 Society of Chemical Industry © 2013 Society of Chemical Industry 69 6 June 2013 10.1002/ps.3514 Rapid Report Rapid Report © 2013 Society of Chemical Industry.
Resumo:
This study presents the use of a whole farm model in a participatory modelling research approach to examine the sensitivity of four contrasting case study farms to a likely climate change scenario. The newly generated information was used to support discussions with the participating farmers in the search for options to design more profitable and sustainable farming systems in Queensland Australia. The four case studies contrasted in key systems characteristics: opportunism in decision making, i.e. flexible versus rigid crop rotations; function, i.e. production of livestock or crops; and level of intensification, i.e. dryland versus irrigated agriculture. Tested tactical and strategic changes under a baseline and climate change scenario (CCS) involved changes in the allocation of land between cropping and grazing enterprises, alternative allocations of limited irrigation water across cropping enterprises, and different management rules for planting wheat and sorghum in rainfed cropping. The results show that expected impacts from a likely climate change scenario were evident in the following increasing order: the irrigated cropping farm case study, the cropping and grazing farm, the more opportunistic rainfed cropping farm and the least opportunistic rainfed cropping farm. We concluded that in most cases the participating farmers were operating close to the efficiency frontier (i.e. in the relationship between profits and risks). This indicated that options to adapt to climate change might need to evolve from investments in the development of more innovative cropping and grazing systems and/or transformational changes on existing farming systems. We expect that even though assimilating expected changes in climate seems to be rather intangible and premature for these farmers, as innovations are developed, adaptation is likely to follow quickly. The multiple interactions among farm management components in complex and dynamic farm businesses operating in a variable and changing climate, make the use of whole farm participatory modelling approaches valuable tools to quantify benefits and trade-offs from alternative farming systems designs in the search for improved profitability and resilience.
Resumo:
Thrips can be important pests of capsicum and chilli crops, causing damage through their feeding and by vectoring viral diseases. As different species vary in their ability to transmit viruses and in their susceptibility to insecticides, it is important to know which species are present in a crop. The seasonal occurrence of thrips in capsicum and chilli crops in the Bundaberg district of south-east Queensland was investigated from July 2002 to June 2003. Fifty flowers were collected weekly from crops on seven farms and the adult thrips extracted and identified. Thrips palmi Karny and Frankliniella occidentalis (Pergande) were collected in the greatest numbers, with T. palmi predominant in autumn crops (March to July) and F. occidentalis predominant in spring crops (August to November). Pseudanaphothrips achaetus (Bagnall) was common, while Thrips tabaci Lindeman, Thrips imaginis Bagnall and Frankliniella schultzei (Trybom) were collected in low numbers.
Resumo:
Chromolaena odorata (L.) King and Robinson (Asteraceae) is a major weed in Timor Leste, affecting grazing lands and subsistence farms, reducing productivity and food security. It was the focus of a biocontrol project funded by the Australian Government from 2005-2009. During this period, the gall fly Cecidochares connexa (Macquart) (Diptera: Tephritidae) was introduced from Papua New Guinea and Indonesia, where it is widespread. From these initial releases, the gall fly established at seven sites and was subsequently re-distributed to most areas in Timor Leste where chromolaena was a problem. It established at most of the release sites that were revisited and caused a visible reduction in plant density and height. Overall, control of chromolaena by the gall fly in Timor Leste is limited by the severe dry season and the widespread use of fire in clearing lands for agriculture, both of which reduce the ability of gall fly populations to persist at damaging levels. Thus additional agents that can tolerate prolonged dry periods are required to increase the level of control of chromolaena.
Resumo:
Chromolaena odorata (L.) King and Robinson (Asteraceae) is a significant agricultural weed in Papua New Guinea (PNG), affecting plantations, food gardens and grazing lands. It was the focus of a collaborative biocontrol program funded by the Australian Government between 1998 and 2007. Chromolaena was recorded at 680 sites in 13 provinces of PNG through surveys, field releases of biocontrol agents and feedback from public awareness programs. Three biocontrol agents, the moth Pareuchaetes pseudoinsulata Rego Barros (Lepidoptera: Arctiidae), the stemgalling fly Cecidochares connexa (Macquart) (Diptera: Tephritidae) and the leaf mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae), were introduced to control chromolaena. Cecidochares connexa was found to be the most effective of the agents introduced as it quickly established at over 300 sites where it was released and spread up to 100km in five years from some sites. Experimental field plots established to determine the impact of the agents on chromolaena, showed that the size of chromolaena infestations decreased with the presence of C. connexa. A survey was conducted to quantify the social and economic benefits of biocontrol of chromolaena to landholders. Chromolaena is considered to be under substantial/significant control in nine provinces in PNG, with about 50% of respondents stating that there is less than 50% of chromolaena remaining following the release of the gall fly. This has resulted in landholders spending less time clearing chromolaena and the re-establishment of small-scale subsistence farms and the regeneration of natural vegetation. Crop yield and income generated from the sale of agricultural produce have increased by at least 50% since chromolaena was brought under biocontrol. It is anticipated that the gall fly will continue to spread and control chromolaena in areas where it has not yet reached, thereby further reducing the impact of the weed in PNG.
Resumo:
Spinosad, diatomaceous earth, and cyfluthrin were assessed on two broiler farms at Gleneagle and Gatton in southeastern Queensland, Australia in 2004-2005 and 2007-2009, respectively to determine their effectiveness in controlling lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Insecticide treatments were applied mostly to earth or 'hard' cement floors of broiler houses before the placement of new bedding. Efficacy of each agent was assessed by regular sampling of litter and counting of immature stages and adult beetles, and comparing insect counts in treatments to counts in untreated houses. Generally, the lowest numbers of lesser mealworm were recorded in the house with hard floors, these numbers equalling the most effective spinosad applications. The most effective treatment was a strategic application of spinosad under feed supply lines on a hard floor. In compacted earth floor houses, mean numbers of lesser mealworms for two under-feed-line spinosad treatments (i.e., 2-m-wide application at 0.18 g of active insecticide (g [AI]) in 100-ml water/m(2), and 1-m-wide application at 0.11 g ([AI] in 33-ml water/m(2)), and an entire floor spinosad treatment (0.07 g [AI] in 86-ml water/m2) were significantly lower (i.e., better control) than those numbers for cyfluthrin, and no treatment (controls). The 1-m-wide under-feed-line treatment was the most cost-effective dose, providing similar control to the other two most effective spinosad treatments, but using less than half the active component per broiler house. No efficacy was demonstrated when spinosad was applied to the surface of bedding in relatively large volumes of water. All applications of diatomaceous earth, applied with and without spinosad, and cyfluthrin at the label rate of 0.02 g (AI)/100-ml water/m(2) showed no effect, with insect counts not significantly different to untreated controls. Overall, the results of this field assessment indicate that cyfluthrin (the Australian industry standard) and diatomaceous earth were ineffective on these two farms and that spinosad can be a viable alternative for broiler house use.
Resumo:
A cross-sectional study was conducted between October 2011 and March 2012 in two major pig producing provinces in the Philippines. Four hundred and seventy one pig farms slaughtering finisher pigs at government operated abattoirs participated in this study. The objectives of this study were to group: (a) smallholder (S) and commercial (C) production systems into patterns according to their herd health providers (HHPs), and obtain descriptive information about the grouped S and C production systems; and (b) identify key HHPs within each production system using social network analysis. On-farm veterinarians, private consultants, pharmaceutical company representatives, government veterinarians, livestock and agricultural technicians, and agricultural supply stores were found to be actively interacting with pig farmers. Four clusters were identified based on production system and their choice of HHPs. Differences in management and biosecurity practices were found between S and C clusters. Private HHPs provided a service to larger C and some larger S farms, and have little or no interaction with the other HHPs. Government HHPs provided herd health service mainly to S farms and small C farms. Agricultural supply stores were identified as a dominant solitary HHP and provided herd health services to the majority of farmers. Increased knowledge of the routine management and biosecurity practices of S and C farmers and the key HHPs that are likely to be associated with those practices would be of value as this information could be used to inform a risk-based approach to disease surveillance and control. © 2014 Elsevier B.V.
Resumo:
During spermatogenesis, giant tiger shrimp (Penaeus monodon) from Queensland, eastern Australia had a high proportion of testicular spermatids that appeared 'hollow' because their nuclei were not visible with the haematoxylin and eosin stain. When examined by transmission electron microscopy, the nuclei of hollow spermatids contained highly decondensed chromatin, with large areas missing fibrillar chromatin. Together with hollow spermatids, testicular pale enlarged (PE) spermatids with weakly staining and marginated chromatin were observed. Degenerate-eosinophilic-clumped (DEC) spermatids that appeared as aggregated clumps were also present in testes tubules. Among 171 sub-adult and adult P. monodon examined from several origins, 43% displayed evidence of hollow spermatids in the testes, 33% displayed PE spermatids and 15% displayed DEC spermatids. These abnormal sperm were also found at lower prevalence in the vas deferens and spermatophore. We propose 'Hollow Sperm Syndrome (HSS)' to describe this abnormal sperm condition as these morphological aberrations have yet to be described in penaeid shrimp. No specific cause of HSS was confirmed by examining either tank or pond cultured shrimp exposed to various stocking densities, temperatures, salinities, dietary and seasonal factors. Compared with wild broodstock, HSS occurred at higher prevalence and severity among sub-adults originating from farms, research ponds and tanks. Further studies are required to establish what physiological, hormonal or metabolic processes may cause HSS and whether it compromises the fertility of male P. monodon.
Resumo:
The inheritance and fitness of phosphine resistance was investigated in an Australian strain of the rice weevil, Sitophilus oryzae (L.), as well as its prevalence in eastern Australia. This type of knowledge may provide insights in to the development of phosphine resistance in this species with the potential for better management. This strain was 12.2 × resistant at the LC50 level based on results for adults exposed for 20 h. Data from the testing of F1 adults from the reciprocal crosses (R♀ × S♂ and S♀ × R♂) showed that resistance was autosomal and inherited as an incompletely recessive trait with a degree of dominance of -0.88. The dose-response data for the F1 × S and F1 × R test crosses, and the F2 progeny were compared with predicted dose-response assuming monogenic recessive inheritance, and the results were consistent with resistance being conferred by one major gene. There was no evidence of fitness cost based on the frequency of susceptible phenotypes in hybridized populations that were reared for seven generations without exposure to phosphine. Lack of fitness cost suggests that resistant alleles will tend to persist in field populations that have undergone selection even if selection pressure is removed. Discriminating dose tests on 107 population samples collected from farms from 2006 to 2010 show that populations containing insects with the weak resistant phenotype are common in eastern Australia, although the frequency of resistant phenotypes within samples was typically low. The prevalence of resistance is a warning that this species has been subject to considerable selection pressure and that effective resistance management practices are needed to address this problem. Crown Copyright © 2014.
Resumo:
The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.
Resumo:
There is a need to develop indicators that relate the dynamics of soil organic carbon (SOC) with changes in land management of horticultural production systems. Soil nematode communities have been shown to be sensitive to land management changes, but often do not include plant-parasites in the calculation of soil nematode community indices. The concept of nematode functional guilds was used to estimate the proportion of carbon entering the soil ecosystem through different channels, such as through decomposition of organic material, the detrital channel, through the roots of plants, the root channel or recycled through the activity of predators, a predation channel. Calculations of the indices were developed and validated using case studies in the north Queensland banana industry. Firstly, a survey of organic and conventional banana farms found a greater proportion of C entering the soil ecosystem through the detrital channel and a reduced proportion of C originating through the root channel at the organic sites relative to conventional sites. Secondly, a field experiment comparing compost amendments, found application of fresh compost significantly increased the proportion of C entering the soil ecosystem through the detrital channel and decreased proportion of C originating from the root channel. Thirdly, a field experiment comparing 'conventional' banana production to an 'alternative' system which incorporated organic matter, found the proportion of C entering the soil ecosystem through the root channel was significantly greater in the conventional systems relative to the alternative system. This research demonstrates that nematode indices can be used to assess horticultural systems, by indicating the origins of SOC.
Resumo:
Six tetraploid hybrids from Fundación Hondureña de Investigación Agrícola (FHIA) were evaluated in Australia over a five year period. They included three AAAA hybrids (FHIA-02, FHIA-17 and FHIA-23) and three AAAB hybrids (FHIA-01, FHIA-18 and SH-3640.10) and they were compared with industry standards, ‘Williams’ (AAA, Cavendish subgroup) and ‘Lady Finger’ (AAB, Pome subgroup). They were screened for their resistance to Fusarium wilt race 1 and subtropical race 4 caused by the pathogen Fusarium oxysporum f.sp. cubense and they were also grown for several cycles on farms not infested with Fusarium wilt to record their agronomic characteristics. The AAAB hybrids, all derived from female parent ‘Prata Anã’ (AAB, Pome subgroup) were the most resistant to both races of Fusarium wilt and were very productive in the subtropics. They were significantly more productive than ‘Lady Finger’, which was susceptible to both races of Fusarium wilt. The AAAA hybrids, with the exception of FHIA-02 which was very susceptible to Fusarium wilt and displayed the poorest agronomic traits of the six hybrids, produced bunch weights as good as Cavendish but were significantly slower to cycle. FHIA-17 and FHIA-23, both derived from the female parent ‘Highgate’ (AAA, Gros Michel subgroup), were also significantly more resistant to Fusarium wilt than ‘Gros Michel’, while FHIA-17 demonstrated a level of resistance similar to ‘Williams’ and FHIA-23 was intermediate between ‘Lady Finger’ and ‘Williams’