170 resultados para fruit yield
Resumo:
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.
Resumo:
There are many reports of efficient embryo germination and the method has been optimized to suit subtropical low chill genotypes. However the subsequent growth, vigor, and ability of germinated embryos to develop and survive acclimatization is rarely reported. Many germinated embryos do not survive acclimatization, develop slowly, or fail to develop normally. Methods to improve plant development from in vitro embryo cultures are needed to improve the number of plants that survive to be useful in breeding programs. This paper describes an improved method of embryo rescue that significantly increases embryo shoot and root development that leads to increased plant survival. Four treatments: Woody Plant Media (WPM) solidified with agar, vermiculite with liquid WPM, vermiculite with WPM plus agar, and conventional stratification, were evaluated for embryo growth and subsequent plantlet development and survival for two low-chill peach and one low-chill nectarine cultivar. Highly significant improvements were found for shoot and root development of seedlings germinated in vermiculite based media compared to embryos germinated in conventional agar-based media. Vermiculite with WPM and agar improved plantlet growth subsequent to in vitro culture and significantly increased survival of germinated embryos resulting in more plants reaching the field.
Resumo:
Aim: Birds play a major role in the dispersal of seeds of many fleshy-fruited invasive plants. The fruits that birds choose to consume are influenced by fruit traits. However, little is known of how the traits of invasive plant fruits contribute to invasiveness or to their use by frugivores. We aim to gain a greater understanding of these relationships to improve invasive plant management. Location: South-east Queensland, Australia. Methods: We measure a variety of fruit morphology, pulp nutrient and phenology traits of a suite of bird-dispersed alien plants. Frugivore richness of these aliens was derived from the literature. Using regressions and multivariate methods, we investigate relationships between fruit traits, frugivore richness and invasiveness. Results: Plant invasiveness was negatively correlated to fruit size, and all highly invasive species had quite similar fruit morphology [smaller fruits, seeds of intermediate size and few (<10) seeds per fruit]. Lower pulp water was the only pulp nutrient trait associated with invasiveness. There were strong positive relationships between the diversity of bird frugivores and plant invasiveness, and in the diversity of bird frugivores in the study region and another part of the plants' alien range. Main conclusions: Our results suggest that weed risk assessments (WRA) and predictions of invasive success for bird-dispersed plants can be improved. Scoring criteria for WRA regarding fruit size would need to be system-specific, depending on the fruit-processing capabilities of local frugivores. Frugivore richness could be quantified in the plant's natural range, its invasive range elsewhere, or predictions made based on functionally similar fruits.
Resumo:
The effects on yield, botanical composition and persistence, of using a variable defoliation schedule as a means of optimising the quality of the tall fescue component of simple and complex temperate pasture mixtures in a subtropical environment was studied in a small plot cutting experiment at Gatton Research Station in south-east Queensland. A management schedule of 2-, 3- and 4-weekly defoliations in summer, autumn and spring and winter, respectively, was imposed on 5 temperate pasture mixtures: 2 simple mixtures including tall fescue (Festuca arundinacea) and white clover (Trifolium repens); 2 mixtures including perennial ryegrass (Lolium perenne), tall fescue and white clover; and a complex mixture, which included perennial ryegrass, tall fescue, white, red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus). Yield from the variable cutting schedule was 9% less than with a standard 4-weekly defoliation. This loss resulted from reductions in both the clover component (13%) and cumulative grass yield (6%). There was no interaction between cutting schedule and sowing mixture, with simple and complex sowing mixtures reacting in a similar manner to both cutting schedules. The experiment also demonstrated that, in complex mixtures, the cutting schedules used failed to give balanced production from all sown components. This was especially true of the grass and white clover components of the complex mixture, as chicory and Persian clover components dominated the mixtures, particularly in the first year. Quality measurements (made only in the final summer) suggested that variable management had achieved a quality improvement with increases in yields of digestible crude protein (19%) and digestible dry matter (9%) of the total forage produced in early summer. The improvements in the yields of digestible crude protein and digestible dry matter of the tall fescue component in late summer were even greater (28 and 19%, respectively). While advantages at other times of the year were expected to be smaller, the data suggested that the small loss in total yield was likely to be offset by increases in digestibility of available forage for grazing stock, especially in the critical summer period.
Resumo:
Diseases of Fruit Crops in Australia is the new standard reference in applied plant pathology in Australia covering important diseases affecting the broad range of fruit and nut crops grown throughout Australia. It is an essential tool for growers, horticulturists, crop consultants, research scientists, plant pathologists, quarantine officers, agribusiness representatives, pest management personnel, educators and students. The book is generously illustrated with high quality colour images to help diagnose diseases. It explains how to identify and manage each disease, describing the symptoms, its importance, the source of infection and spread, and control measures. Based on the highly regarded 1993 edition of Diseases of Fruit Crops, this new work updates management practices that have evolved since then. Importantly, it contains the latest information on diseases that have recently emerged in Australia as well as exotic diseases that are biosecurity threats to Australian fruit and nut production.
Resumo:
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1 B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
Vertebrates play a major role in dispersing seeds of fleshy-fruited alien plants. However, we know little of how the traits of alien fleshy fruits compare with indigenous fleshy fruits, and how these differences might contribute to invasion success. In this study, we characterised up to 38 fruit morphology, pulp nutrient and phenology traits of an assemblage of 34 vertebrate-dispersed alien species in south-eastern Queensland, Australia. Most alien fruits were small (81%\15 mm in mean width), and had watery fruit pulps that were high in sugars and low in nitrogen and lipids. When compared to indigenous species, alien fruits had significantly smaller seeds. Further, alien fruit pulps contained more sugar and more variable (and probably greater) nitrogen per pulp wet weight, and species tended to have longer fruiting seasons than indigenous species. Our analyses suggest that fruit traits could be important in determining invasiveness and could be used to improve pre- and post-border weed risk assessment.
Resumo:
The genus Asparagus includes at least six invasive species in Australia. Asparagus aethiopicus and A. africanus are invasive in subtropical Australia, and a third species, A. virgatus is naturalized and demonstrates localized spread in south east Queensland. To better understand how the attributes of these species contribute to their invasiveness, we compared fruit and seed traits, germination, seedling emergence, seed survival, and time-to-maturity. We further investigated dispersal ecology of A. africanus, examining the diet of a local frugivore, the figbird (Sphecotheres viridis) and the effect of gut passage on seedling emergence. Overall, A. aethiopicus was superior in germination and emergence, with the highest mean germination (98.8%) and emergence (94.5%) under optimal conditions and higher emergence (mean of 73.3%) across all treatments. In contrast, A. africanus had the lowest germination under optimal conditions (71.7%) and low mean seedling emergence (49.5%), but had fruits with the highest relative yield (ratio of dry pulp to fruit fresh weight) that were favored by a local frugivore. Figbirds consumed large numbers of A. africanus fruits (~30% of all non-Ficus fruits), and seedling germination was not significantly affected by gut passage compared to unprocessed fruits. Asparagus virgatus germinated poorly under cool, light conditions (1.4%) despite a high optimum mean (95.0%) and had low mean performance across emergence treatments (36.3%). The species also had fruits with a low pulp return for frugivores. For all species, seed survival declined rapidly in the first 12 mo and fell to < 3.2% viability at 36 mo. On the basis of the traits considered, A. virgatus is unlikely to have the invasive potential of its congeners. Uniformly short seed survival times suggest that weed managers do not have to contend with a substantial persistent soil-stored seed bank, but frugivore-mediated dispersal beyond existing infestations will present a considerable management challenge.
Resumo:
Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a 'biofumigation' potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957-5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033-41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season's treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.
Resumo:
Premature or abnormal softening of persimmon fruit within 3-7 days after harvest is a major physiological problem of non-astringent persimmon cultivars grown in subtropical regions of Australia. Up to 30% of consignments may soften rapidly frequently overnight, often resulting in the flesh becoming very soft, completely translucent, and impossible to handle. Incidence of premature soft fruit can vary with season and production location. To study the incidence of this problem, we conducted surveys of fruit harvested from five environmentally-diverse regions of Australia over a two-year period. We found wide variation in the rate of both premature softening and normal softening with differences of up 37 days between orchards in percentage of fruit reaching 50% soft. We found that the rate of fruit softening was exacerbated by lower calcium concentrations at fruit set, shorter fruit development periods and heavier rainfall during the fruit development period. The implications of our findings, in terms of orchard management, export and domestic marketing strategies are discussed.
Resumo:
The productivity of containerized and bare-rooted plants of strawberry (Fragaria * ananassa) was investigated over 4 years in southeastern Queensland, Australia. In the first experiment, plants in small, 75-cm3 cells were compared with bare-rooted plants of 'Festival' and 'Sugarbaby'. A similar experiment was conducted in year 2 with these two cultivars, plus 'Rubygem'. In year 3, plants in large, 125-cm3 cells were compared with small and large bare-rooted plants of 'Festival' and 'Rubygem'. Treatments in each of these experiments were planted on the same date. In the final experiment, plants in large cells and bare-rooted plants of 'Festival' were planted in late March, early April, mid-April, or early May. The plants grown in small cells produced 60% to 85% of the yields of the bare-rooted plants, whereas the yield of plants in large cells was equal to that of the bare-rooted plants. Containerized plants are twice as expensive as bare-rooted plants (A$0.60 vs. A$0.32) (A$=Australian dollar), and gave only similar or lower returns than the bare-rooted plants (A$0.54 to A$3.73 vs. A$1.40 to A$4.09). It can be concluded that containerized strawberry plants are not economically viable in subtropical Queensland under the current price structure and growing system. There was a strong relationship between yield and average plant dry weight (leaves, crowns, and roots) in 'Festival' in the last three experiments, where harvesting continued to late September or early October. Productivity increased by about 18 g for each gram increase in plant dry weight, indicating the dependence of fruit production on vegetative growth in this environment.
Cultivar-specific effects of pathogen testing on storage root yield of sweetpotato, Ipomoea batatas.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweetpotato, Ipomoea batatas, inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT) clones of 14 sweetpotato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study. Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars. .
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.