81 resultados para bacterial disease
Resumo:
Bacterial proliferation in both vase solutions and in cut flower stems has been implicated in reducing the vase life of numerous genera. Boronia heterophylla F. Muell. (Red Boronia) vase life was assessed at two stages of floral maturity for nine vase solution treatments covering a pH range of 2.5-5.7. Vase life for advanced harvest maturity stems ranged from 4.2 d in 10 mM citric acid + 50 mg L-1 chlorine (pH 2.5) to 12.9 d after STS pulsing (pH 5.7). For normal harvest maturity stems, the corresponding range was 5.8-19.0 d, respectively. Vase solutions containing 50 mg L-1 chlorine biocide resulted in decreased longevity. In contrast, pulsing with the ethylene-binding inhibitor, STS, significantly increased vase life. The number of bacteria in the vase solutions after 11 d was determined in stems of advanced maturity. The solution with the greatest number of bacteria, 4.0 x 10(10) cfu mL(-1), was water used after STS pulsing and in which the flowers lasted longest. Vase solution bacteria were enumerated on days 0,3, 6, 9 and 12 of the vase period with stems of normal harvest maturity. There was no relationship between vase life and vase solution bacterial numbers ((R) over bar (2) = 0.000). Moreover, there was a negative relationship between numbers of bacteria in basal 0-5 cm stem segments and vase life. As no correlations were evident between longevity and either the pH or vase solution bacterial numbers, B. heterophylla vase life was evidently limited principally by ethylene action. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria , Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. © 2014 Penton et al.
Resumo:
For many years Australian forest pathologists and other scientists have dreaded the arrival of the rust fungus, Puccinia psidii, commonly known as Myrtle Rust, in Australia. This pathogen eventually did arrive in that country and was first detected in New South Wales in 2010 on Willow Myrtle (Agonis flexuosa). It is generally accepted that it entered the country on an ornamental Myrtales* host brought in by a private nursery. Despite efforts to eradicate the invasive rust, it has already spread widely, now occurring along the east coast of Australia, from temperate areas in Victoria and southern North South Wales to tropical areas in north Queensland.
Resumo:
Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
Resumo:
The application of variable-number tandem repeats (VNTR) genotyping of Mycobacterium avium subsp. paratuberculosis isolates to assist in investigating incidents of bovine Johne’s disease in a low-prevalence region of Australia is described in the current study. Isolates from a response to detection of bovine Johne’s disease in Queensland were compared with strains from national and international sources. The tandem application of mycobacterial interspersed repetitive unit (MIRU) and multilocus short sequence repeats (MLSSR) genotyping identified 2 strains, 1 that infected cattle on multiple properties with trace-forward histories from a common infected property, and 1 genotypically different strain recovered from a single property. The former strain showed an identical genotype to an isolate from India. Neither strain showed a genotypic link to regions of Australia with a higher prevalence of the disease. Genotyping has indicated incursions from 2 independent sources. This intelligence has informed investigations into potential routes of entry and the soundness of ongoing control measures, and supported strategy and policy decisions regarding management of Mycobacterium avium subsp. paratuberculosis incursions for Queensland.
Resumo:
The shelf life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots (SER) ( Fusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicides either as field spray treatments or as postharvest dips. These have done a fairly good job at serving the industry and allowing fruits to be transported, stored and sold at markets distant from the areas of production. There are however concerns on the continuous use of these fungicides as the main or only tool for the management of these diseases. This has necessitated a re-think of how these diseases could be sustainably managed into the future using a systems approach that focuses on integrated crop management. It is a holistic approach that considers all the crop protection management strategies including the genetics of the plant and its ability to naturally defend itself from infection with plant activators and growth regulators. It also considers other cultural or agronomic management tools such as the use of crop nutrition, timely application of irrigation water and the pruning of trees on a regular basis as a means of reducing inoculum levels in the orchards. The ultimate aim of this approach is to increase yields and obtain long term sustainable production. It is guided by the sustainable crop production principle which states that producers should apply as little inputs as possible but as much as needed.
Resumo:
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.
Resumo:
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. One potential method to manage fusarium wilt of banana is by manipulating the nutrient status in the soil. This study was conducted to determine the quality of Foc suppressive and conducive soil, the influence of soil application of silica and manure on the incidence of fusarium wilt of banana. Surveys were conducted in five banana plantations in three provinces in Indonesia: Lampung-Sumatra, West Java and Central Java. From the five locations, one location (Sala-man-Central Java) was heavily infected by Foc, another location (NTF Lampung-Sumatera) was slightly infected by Foc, while the rest (Sarampad-West Java, Talaga-West Java and GGP Lampung-Sumatra) were healthy banana plantations without Foc infection. Labile carbon analysis showed that the Foc suppressive soil had greater labile carbon content than conducive soil. Also, the analysis of fluorescein diacetate hydrolysis (FDA) and ?-glucosidase showed greater microbial activity in suppressive soil than the conducive soil. Observations of the incidence of necrotic rhizome of Foc susceptible 'Ambon Kuning' (AAA) banana cultivar showed that in the suppressive soil taken from Sarampad West Java, the application of silica and manure helped suppress fusarium wilt disease development. In the conducive soil taken from Salaman-Central Java, silica and manure applications were not able to suppress disease incidence. The result of this study indicated that in suppressive soil, the application of silica can increase plant resistance to Foc infection, while manure application can increase soil microbial activity, and suppress Foc development.
Resumo:
Background and Aim The etiology of Crohn's disease (CD) implicates both genetic and environmental factors. Smoking behavior is one environmental risk factor to play a role in the development of CD. The study aimed to assess the contribution of the interleukin 23 receptor (IL23R) in determining disease susceptibility in two independent cohorts of CD, and to investigate the interactions between IL23R variants, smoking behavior, and CD-associated genes, NOD2 and ATG16L1. Methods Ten IL23R single-nucleotide polymorphisms (SNPs) were genotyped in 675 CD cases, and 1255 controls from Brisbane, Australia (dataset 1). Six of these SNPs were genotyped in 318 CD cases and 533 controls from Canterbury, New Zealand (dataset 2). Case–control analysis of genotype and allele frequencies, and haplotype analysis for all SNPs was conducted. Results We demonstrate a strong increased CD risk for smokers in both datasets (odds ratio 3.77, 95% confidence interval 2.88–4.94), and an additive interaction between IL23R SNPs and cigarette smoking. Ileal involvement was a consistent marker of strong SNP–CD association (P ≤ 0.001), while the lowest minor allele frequencies for location were found in those with colonic CD (L2). Three haplotype blocks were identified across the 10 IL23R SNPs conferring different risk of CD. Haplotypes conferred no further risk of CD when compared with single SNP analyses. Conclusion IL23R gene variants determine CD susceptibility in the Australian and New Zealand population, particularly ileal CD. A strong additive interaction exists between IL23R SNPs and smoking behavior resulting in a dramatic increase in disease risk depending upon specific genetic background.
Resumo:
Establishment of the rumen microbiome can be affected by both early-life dietary measures and rumen microbial inoculation. This study used a 2 × 3 factorial design to evaluate the effects of inclusion of dietary fat type and the effects of rumen inoculum from different sources on ruminal bacterial communities present in early stages of the lambs’ life. Two different diets were fed ad libitum to 36 pregnant ewes (and their lambs) from 1 month pre-lambing until weaning. Diets consisted of chaffed lucerne and cereal hay and 4% molasses, with either 4% distilled coconut oil (CO) provided as a source of rumen-active fat or 4% Megalac® provided as a source of rumen-protected fat (PF). One of three inoculums was introduced orally to all lambs, being either (1) rumen fluid from donor ewes fed the PF diet; (2) rumen fluid from donor ewes fed CO; or (3) a control treatment of MilliQ-water. After weaning at 3 months of age, each of the six lamb treatment groups were grazed in spatially separated paddocks. Rumen bacterial populations of ewes and lambs were characterised using 454 amplicon pyrosequencing of the V3/V4 regions of the 16S rRNA gene. Species richness and biodiversity of the bacterial communities were found to be affected by the diet in ewes and lambs and by inoculation treatment of the lambs. Principal coordinate analysis and analysis of similarity (ANOSIM) showed between diet differences in bacterial community groups existed in ewes and differential bacterial clusters occurred in lambs due to both diet and neonatal inoculation. Diet and rumen inoculation acted together to clearly differentiate the bacterial communities through to weaning, however the microbiome effects of these initial early life interventions diminished with time so that rumen bacterial communities showed greater similarity 2 months after weaning. These results demonstrate that ruminal bacterial communities of newborn lambs can be altered by modifying the diet of their mothers. Moreover, the rumen microbiome of lambs can be changed by diet while they are suckling or by inoculating their rumen, and resulting changes in the rumen bacterial microbiome can persist beyond weaning.
Resumo:
Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30–35 °C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures.
Resumo:
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
Resumo:
Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.