74 resultados para Zero-coupon yield curve
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.
Resumo:
Abstract Biochar has significant potential to improve crop performance. This study examined the effect of biochar application on the photosynthesis and yield of peanut crop grown on two soil types. The commercial peanut cultivar Middleton was grown on red ferrosol and redoxi-hydrosol (Queensland, Australia) amended with a peanut shell biochar gradient (0, 0.375, 0.750, 1.50, 3.00 and 6.00 %, w/w, equivalent up to 85 t ha−1) in a glasshouse pot experiment. Biomass and pod yield, photosynthesis-[CO2] response parameters, leaf characteristics and soil properties (carbon, nitrogen (N) and nutrients) were quantified. Biochar significantly improved peanut biomass and pod yield up to 2- and 3-folds respectively in red ferrosol and redoxi-hydrosol. A modest (but significant) biochar-induced improvement of the maximumelectron transport rate and saturating photosynthetic rate was observed for red ferrosol. This response was correlated to increased leaf N and accompanied with improved soil available N and biological N fixation. Biochar application also improved the availability of other soil nutrients, which appeared critical in improving peanut performance, especially on infertile redoxihydrosol. Our study suggests that application of peanut shell derived biochar has strong potential to improve peanut yield on red ferrosol and redoxi-hydrosol. Biochar soil amendment can affect leaf N status and photosynthesis, but the effect varied with soil type.
Resumo:
Cultural practices alter patterns of crop growth and can modify dynamics of weed-crop competition, and hence need to be investigated to evolve sustainable weed management in dry-seeded rice (DSR). Studies on weed dynamics in DSR sown at different times under two tillage systems were conducted at the Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan. A commonly grown fine rice cultivar 'Super Basmati' was sown on 15th June and 7th July of 2010 and 2011 under zero-till (ZT) and conventional tillage (CONT) and it was subjected to different durations of weed competition [10, 20, 30, 40, and 50 days after sowing (DAS) and season-long competition]. Weed-free plots were maintained under each tillage system and sowing time for comparison. Grassy weeds were higher under ZT while CONT had higher relative proportion of broad-leaved weeds in terms of density and biomass. Density of sedges was higher by 175% in the crop sown on the 7th July than on the 15th June. Delaying sowing time of DSR from mid June to the first week of July reduced weed density by 69 and 43% but their biomass remained unaffected. Tillage systems had no effect on total weed biomass. Plots subjected to season-long weed competition had mostly grasses while broad-leaved weeds were not observed at harvest. In the second year of study, dominance of grassy weeds was increased under both tillage systems and sowing times. Significantly less biomass (48%) of grassy weeds was observed under CONT than ZT in 2010; however, during 2011, this effect was non-significant. Trianthema portulacastrum and Dactyloctenium aegyptium were the dominant broad-leaved and grassy weeds, respectively. Cyperus rotundus was the dominant sedge weed, especially in the crop sown on the 7th July. Relative yield loss (RYL) ranged from 3 to 13% and 7 to16% when weeds were allowed to compete only for 20 DAS. Under season-long weed competition, RYL ranged from 68 to 77% in 2010 and 74 to80% in 2011. The sowing time of 15th June was effective in minimizing weed proliferation and rectifying yield penalty associated with the 7th July sowing. The results suggest that DSR in Pakistan should preferably be sown on 15th June under CONT systems and weeds must be controlled before 20 DAS to avoid yield losses. Successful adoption of DSR at growers' fields in Pakistan will depend on whether growers can control weeds and prevent shifts in weed population from intractable weeds to more difficult-to-control weeds as a consequence of DSR adoption.
Resumo:
Reducing crop row spacing and delaying time of weed emergence may provide crops a competitive edge over weeds. Field experiments were conducted to evaluate the effects of crop row spacing (11, 15, and 23-cm) and weed emergence time (0, 20, 35, 45, 55, and 60 days after wheat emergence; DAWE) on Galium aparine and Lepidium sativum growth and wheat yield losses. Season-long weed-free and crop-free treatments were also established to compare wheat yield and weed growth, respectively. Row spacing and weed emergence time significantly affected the growth of both weed species and wheat grain yields. For both weed species, the maximum plant height, shoot biomass, and seed production were observed in the crop-free plots, and delayed emergence decreased these variables. In weed-crop competition plots, maximum weed growth was observed when weeds emerged simultaneously with the crop in rows spaced 23-cm apart. Less growth of both weed species was observed in narrow row spacing (11-cm) of wheat as compared with wider rows (15 and 23-cm). These weed species produced less than 5 seeds plant-1 in 11-cm wheat rows when they emerged at 60 DAWE. Presence of weeds in the crop especially at early stages was devastating for wheat yields. Therefore, maximum grain yield (4.91tha-1) was recorded in the weed-free treatment at 11-cm row spacing. Delay in time of weed emergence and narrow row spacing reduced weed growth and seed production and enhanced wheat grain yield, suggesting that these strategies could contribute to weed management in wheat.
Resumo:
Lower water availability coupled with labor shortage has resulted in the increasing inability of growers to cultivate puddled transplanted rice (PTR). A field study was conducted in the wet season of 2012 and dry season of 2013 to evaluate the performance of five rice establishment methods and four weed control treatments on weed management, and rice yield. Grass weeds were higher in dry-seeded rice (DSR) as compared to PTR and nonpuddled transplanted rice (NPTR). The highest total weed density (225-256plantsm-2) and total weed biomass (315-501gm-2) were recorded in DSR while the lowest (102-129plantsm-2 and 75-387gm-2) in PTR. Compared with the weedy plots, the treatment pretilachlor followed by fenoxaprop plus ethoxysulfuron plus 2,4-D provided excellent weed control. This treatment, however, had a poor performance in NPTR. In both seasons, herbicide efficacy was better in DSR and wet-seeded rice. PTR and DSR produced the maximum rice grain yields. The weed-free plots and herbicide treatments produced 84-614% and 58-504% higher rice grain yield, respectively, than the weedy plots in 2012, and a similar trend was observed in 2013.
Resumo:
Dry-seeded rice (DSR) is an emerging resource-conserving technology in many Asian countries, but weeds remain the major threat to the production of DSR systems. A field study was conducted in 2012 and 2013 at the International Rice Research Institute (IRRI), Los Baños, Philippines, to evaluate the performance of sole and sequential applications of preemergence (oxadiazon and pendimethalin), early postemergence (butachlor + propanil and thiobencarb + 2,4-D), and late postemergence herbicides (bispyribac-sodium and fenoxaprop + ethoxysulfuron) with different modes of action in comparison to manual weeding in DSR. The sequential applications of all preemergence and postemergence herbicides reduced weed density and biomass by 80–100% compared to the nontreated plots. The sole application of postemergence herbicides reduced weed density by only 44–54% and weed biomass by 51–61%, whereas oxadiazon alone reduced weed density and biomass by 96–100%. All herbicide treatments and manual weeding significantly affected tiller number, biomass, crop growth rate, agronomic indices, yield-contributing parameters (panicle density and filled grains), and yield (biological and grain) of rice. The highest grain yield was obtained in the manually weeded plots (5.9–6.1 t ha−1) and the plots treated with oxadiazon alone (5.4–5.6 t ha−1) and oxadiazon followed by postemergence herbicides (5.2–5.8 t ha−1). The lowest paddy yield (0.22 t ha−1) was achieved in the nontreated plots followed by the plots treated with the sole application of bispyribac-sodium and fenoxaprop + ethoxysulfuron. The results suggest that oxadiazon is the best broad-spectrum and economically effective herbicide when applied alone or in combination with other effective postemergence herbicides with different modes of action, depending on the weed species present in the field.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential changes in spring wheat yields at Swift Current and Melfort, Canada, for different sowing windows under projected climate scenarios (i.e., the representative concentration pathways, RCP4.5 and RCP8.5). First, the APSIM model was calibrated and evaluated at the study sites using data from long term experimental field plots. Then, the impacts of change in sowing dates on final yield were assessed over the 2030-2099 period with a 1990-2009 baseline period of observed yield data, assuming that other crop management practices remained unchanged. Results showed that the performance of APSIM was quite satisfactory with an index of agreement of 0.80, R2 of 0.54, and mean absolute error (MAE) and root mean square error (RMSE) of 529 kg/ha and 1023 kg/ha, respectively (MAE = 476 kg/ha and RMSE = 684 kg/ha in calibration phase). Under the projected climate conditions, a general trend in yield loss was observed regardless of the sowing window, with a range from -24 to -94 depending on the site and the RCP, and noticeable losses during the 2060s and beyond (increasing CO2 effects being excluded). Smallest yield losses obtained through earlier possible sowing date (i.e., mid-April) under the projected future climate suggested that this option might be explored for mitigating possible adverse impacts of climate variability. Our findings could therefore serve as a basis for using APSIM as a decision support tool for adaptation/mitigation options under potential climate variability within Western Canada.
Resumo:
In this study, we investigated the extent and physiological bases of yield variation due to row spacing and plant density configuration in the mungbean Vigna radiata (L.) Wilczek variety “Crystal” grown in different subtropical environments. Field trials were conducted in six production environments; one rain-fed and one irrigated trial each at Biloela and Emerald, and one rain-fed trial each at Hermitage and Kingaroy sites in Queensland, Australia. In each trial, six combinations of spatial arrangement of plants, achieved through two inter-row spacings of 1 m or 0.9 m (wide row), 0.5 m or 0.3 m (narrow row), with three plant densities, 20, 30 and 40 plants/m2, were compared. The narrow row spacing resulted in 22% higher shoot dry matter and 14% more yield compared to the wide rows. The yield advantage of narrow rows ranged from 10% to 36% in the two irrigated and three rain-fed trials. However, yield loss of up to 10% was also recorded from narrow rows at Emerald where the crop suffered severe drought. Neither the effects of plant density, nor the interaction between plant density and row spacing, however, were significant in any trial. The yield advantage of narrow rows was related to 22% more intercepted radiation. In addition, simulations by the Agricultural Production Systems Simulator model, using site-specific agronomy, soil and weather information, suggested that narrow rows had proportionately greater use of soil water through transpiration, compared to evaporation resulting in higher yield per mm of soil water. The long-term simulation of yield probabilities over 123 years for the two row configurations showed that the mungbean crop planted in narrow rows could produce up to 30% higher grain yield compared to wide rows in 95% of the seasons.
Resumo:
Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957–2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20 through (i) reduced frost damage (~10 improvement) and (ii) the ability to use earlier sowing dates (adding a further 10 improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.
Resumo:
In Maize, as with most cereals, grain yield is mostly determined by the total grain number per unit area, which is highly related to the rate of crop growth during the critical period around silking. Management practices such as plant density or nitrogen fertilization can affect the growth of the crop during this period, and consequently the final grain yield. Across the Northern Region maize is grown under a large range of plant populations under high year-to-year rainfall variability. Clear guidelines on how to match hybrids and management across environments and expected seasonal condition, would allow growers to increase yields and profits while managing risks. The objective of this research was to screen the response of commercial maize hybrids differing in maturity and prolificity (i.e. multi or single cobbing) types for their efficiency in the allocation of biomass into grain.
Resumo:
Sown pasture rundown and declining soil fertility for forage crops are too serious to ignore with losses in beef production of up to 50% across Queensland. The feasibility of using strategic applications of nitrogen (N) fertiliser to address these losses was assessed by analysing a series of scenarios using data drawn from published studies, local fertiliser trials and expert opinion. While N fertilser can dramatically increase productivity (growth, feed quality and beef production gains of over 200% in some scenarios), the estimated economic benefits, derived from paddock level enterprise budgets for a fattening operation, were much more modest. In the best-performing sown grass scenarios, average gross margins were doubled or tripled at the assumed fertiliser response rates, and internal rates of return of up to 11% were achieved. Using fertiliser on forage sorghum or oats was a much less attractive option and, under the paddock level analysis and assumptions used, forages struggled to be profitable even on fertile sites with no fertiliser input. The economics of nitrogen fertilising on grass pasture were sensitive to the assumed response rates in both pasture growth and liveweight gain. Consequently, targeted research is proposed to re-assess the responses used in this analysis, which are largely based on research 25-40 years ago when soils were generally more fertile and pastures less rundown.