135 resultados para Wear resistance
Resumo:
Four field trials were conducted with wood modified with dimethyloldihydroxy-ethyleneurea (DMDHEU) in contact with subterranean termites. Trials 1 to 3 were conducted with Coptotermes acinaciformis (Froggatt); 1 and 2 in south-east Queensland, and 3 in northern Queensland, Australia. Trial 4 was conducted in northern Queensland with Mastotermes darwiniensis (Froggatt). Four timber species (Scots pine, beech, Slash pine and Spotted gum) and two levels (1.3 M and 2.3 M) of DMDHEU were used. The tests were validated. DMDHEU successfully prevented damage by C. acinaciformis in south-east Queensland, but not in northern Queensland. It also did not protect the wood against M. darwiniensis. Except for beech in trial 4, DMDHEU led to reduced mass losses caused by termite attack compared to the unmodified feeder stakes. Slash pine (in trials 1 and 3) and Spotted gum (in trial 1) presented low mass losses. Modification of Scots pine was more effective against termite damage than the modification of beech.
Resumo:
Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R (2) sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.
Resumo:
Australian and international chickpea (Cicer arietinum) cultivars and germplasm accessions, and wild annual Cicer spp. in the primary and secondary gene pools, were assessed in glasshouse experiments for levels of resistance to the root-lesion nematodes Pratylenchus thornei and P. neglectus. Lines were grown in replicated experiments in pasteurised soil inoculated with a pure culture of either P. thornei or P. neglectus and the population density of the nematodes in the soil plus roots after 16 weeks growth was used as a measure of resistance. Combined statistical analyses of experiments (nine for P. thornei and four for P. neglectus) were conducted and genotypes were assessed using best linear unbiased predictions. Australian and international chickpea cultivars possessed a similar range of susceptibilities through to partial resistance. Wild relatives from both the primary (C. reticulatum and C. echinospermum) and secondary (C. bijugum) gene pools of chickpea were generally more resistant than commercial chickpea cultivars to either P. thornei or P. neglectus or both. Wild relatives of chickpea have probably evolved to have resistance to endemic root-lesion nematodes whereas modern chickpea cultivars constitute a narrower gene pool with respect to nematode resistance. Resistant accessions of C. reticulatum and C. echinospermum were crossed and topcrossed with desi chickpea cultivars and resistant F(4) lines were obtained. Development of commercial cultivars with the high levels of resistance to P. thornei and P. neglectus in these hybrids will be most valuable for areas of the Australian grain region and other parts of the world where alternating chickpea and wheat crops are the preferred rotation.
Resumo:
Post head-emergence frost causes substantial losses for Australian barley producers. Varieties with improved resistance would have a significant positive impact on Australian cropping enterprises. Five barley genotypes previously tested for reproductive frost resistance in southern Australia were tested, post head-emergence, in the northern grain region of Australia and compared with the typical northern control cultivars, Gilbert and Kaputar. All tested genotypes suffered severe damage to whole heads and stems at plant minimum temperatures less than -8degreesC. In 2003, 2004 and 2005, frost events reaching a plant minimum temperature of ~-6.5degreesC did not result in the complete loss of grain yield. Rather, partial seed set was observed. The control genotype, Gilbert, exhibited seed set that was greater than or equal to that of any genotype in each year, as did Kaputar when tested in 2005. Thus, Gilbert and Kaputar were at least as resistant as any tested genotype. This contrasts with trial results from the southern grain region where Gilbert was reported to be less resistant than Franklin, Amagi Nijo and Haruna Nijo. Hence, rankings for post head-emergence frost damage in the northern grain region differ from those previously reported. These results indicate that Franklin, Amagi Nijo and Haruna Nijo are not likely to provide useful sources of frost resistance or markers to develop improved varieties for the northern grain region of Australia.
Resumo:
The responses of 95 barley lines and cultivars to spot form of net blotch (SFNB) caused by Pyrenophora teres f. maculata were analyzed as seedlings and adults in Australia and Canada. Cluster analyses revealed complex reaction responses. Only 2 lines (Esperance Orge 289 and TR3189) were resistant to all isolates at the seedling stage, whereas 15 lines and cultivars (81-82/033, Arimont, BYDV-018, CBSS97M00855T-B2-M1-Y1-M2-Y-1M-0Y, C19776, Keel, Sloop, Torrens, TR326, VB0111, Yarra, VB0229, WI-2477, WI2553, and Wisconsin Pedigree) were resistant toward the two Canadian isolates and mixture of Australian isolates at the adult stages. In Australian field experiments, the effectiveness of SFNB resistance in three barley cultivars (Barque. Cowabbie, and Schooner) and one breeding line (VB9104) with a different source of resistance was tested. Barque, which possessed a resistance gene that provided complete resistance to SFNB, was the most effective and showed no effect on grain yield or quality in the presence of inoculum. Generally, cultivars with seedling or adult resistance had less disease and better grain quality than the susceptible control. Dash, but they were not as effective as Barque. A preliminary differential set of 19 barley lines and cultivars for P teres I. maculata is proposed.
Resumo:
Rabbit haemorrhagic disease is a major tool for the management of introduced, wild rabbits in Australia. However, new evidence suggests that rabbits may be developing resistance to the disease. Rabbits sourced from wild populations in central and southeastern Australia, and domestic rabbits for comparison, were experimentally challenged with a low 60 ID50 oral dose of commercially available Czech CAPM 351 virus - the original strain released in Australia. Levels of resistance to infection were generally higher than for unselected domestic rabbits and also differed (0-73% infection rates) between wild populations. Resistance was lower in populations from cooler, wetter regions and also low in arid regions with the highest resistance seen within zones of moderate rainfall. These findings suggest the external influences of non-pathogenic calicivirus in cooler, wetter areas and poor recruitment in arid populations may influence the development rate of resistance in Australia.
Resumo:
Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.
Resumo:
BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions. © 2013 Society of Chemical Industry © 2013 Society of Chemical Industry 69 6 June 2013 10.1002/ps.3514 Rapid Report Rapid Report © 2013 Society of Chemical Industry.
Resumo:
Fumigation of stored grain with phosphine (PH 3) is used widely to control the lesser grain borer Rhyzopertha dominica. However, development of high level resistance to phosphine in this species threatens control. Effective resistance management relies on knowledge of the expression of resistance in relation to dosage at all life stages. Therefore, we determined the mode of inheritance of phosphine resistance and strength of the resistance phenotype at each developmental stage. We achieved this by comparing mortality and developmental delay between a strongly resistant strain (R-strain), a susceptible strain (S-strain) and their F 1 progenies. Resistance was a maternally inherited, semi-dominant trait in the egg stage but was inherited as an autosomal, incompletely recessive trait in larvae and pupae. The rank order of developmental tolerance in both the sensitive and resistant strains was eggs > pupae > larvae. Comparison of published values for the response of adult R. dominica relative to our results from immature stages reveals that the adult stage of the S-strain is more sensitive to phosphine than are larvae. This situation is reversed in the R-strain as the adult stage is much more resistant to phosphine than even the most tolerant immature stage. Phosphine resistance factors at LC 50 were eggs 400×, larvae 87× and pupae 181× with respect to reference susceptible strain (S-strain) adults indicating that tolerance conferred by a particular immature stage neither strongly nor reliably interacts with the genetic resistance element. Developmental delay relative to unfumigated control insects was observed in 93% of resistant pupae, 86% of resistant larvae and 41% of resistant eggs. Increased delay in development and the toxicity response to phosphine exposure were both incompletely recessive. We show that resistance to phosphine has pleiotropic effects and that the expression of these effects varies with genotype and throughout the life history of the insect. © 2012.
Resumo:
Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.
Resumo:
The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A (m) -genome) and 5 (24%) Triticum urartu (A (u) -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.
Resumo:
Nematode species Pratylenchus thornei and P. neglectus are the two most important root-lesion nematodes affecting wheat (Triticum aestivum L.) and other grain crops in Australia. For practical plant breeding, it will be valuable to know the mode of inheritance of resistance and whether the same set of genes confer resistance to both species. We evaluated reactions to P. thornei and P. neglectus of glasshouse-inoculated plants of five doubled-haploid populations derived from five resistant synthetic hexpaloid wheat lines, each crossed to the susceptible Australian wheat cultivar Janz. For each cross we determined genetic variance, heritability and minimum number of effective resistance genes for each nematode species. Distributions of nematode numbers for both species were continuous for all doubled-haploid populations. Heritabilities were high and the resistances were controlled by 4-7 genes. There was no genetic correlation between resistance to P. thornei and to P. neglectus in four of the populations and a significant but low correlation in one. Therefore, resistances to P. thornei and to P. neglectus are probably inherited quantitatively and independently in four of these synthetic hexaploid wheat populations, with the possibility of at least one genetic factor contributing to resistance to both species in one of the populations. Parents with the greatest level of resistance will be the best to use as donor parents to adapted cultivars, and selection of resistance to both species in early generations will be optimal to carry resistance through successive cycles of inbreeding to produce resistant cultivars for release.
Resumo:
BACKGROUND Control of pests in stored grain and the evolution of resistance to pesticides are serious problems worldwide. A stochastic individual-based two-locus model was used to investigate the impact of two important issues, the consistency of pesticide dosage through the storage facility and the immigration rate of the adult pest, on overall population control and avoidance of evolution of resistance to the fumigant phosphine in an important pest of stored grain, the lesser grain borer. RESULTS A very consistent dosage maintained good control for all immigration rates, while an inconsistent dosage failed to maintain control in all cases. At intermediate dosage consistency, immigration rate became a critical factor in whether control was maintained or resistance emerged. CONCLUSION Achieving a consistent fumigant dosage is a key factor in avoiding evolution of resistance to phosphine and maintaining control of populations of stored-grain pests; when the dosage achieved is very inconsistent, there is likely to be a problem regardless of immigration rate. © 2012 Society of Chemical Industry
Resumo:
In this article, we describe and compare two individual-based models constructed to investigate how genetic factors influence the development of phosphine resistance in lesser grain borer (R. dominica). One model is based on the simplifying assumption that resistance is conferred by alleles at a single locus, while the other is based on the more realistic assumption that resistance is conferred by alleles at two separate loci. We simulated the population dynamic of R. dominica in the absence of phosphine fumigation, and under high and low dose phosphine treatments, and found important differences between the predictions of the two models in all three cases. In the absence of fumigation, starting from the same initial frequencies of genotypes, the two models tended to different stable frequencies, although both reached Hardy-Weinberg equilibrium. The one-locus model exaggerated the equilibrium proportion of strongly resistant beetles by 3.6 times, compared to the aggregated predictions of the two-locus model. Under a low dose treatment the one-locus model overestimated the proportion of strongly resistant individuals within the population and underestimated the total population numbers compared to the two-locus model. These results show the importance of basing resistance evolution models on realistic genetics and that using oversimplified one-locus models to develop pest control strategies runs the risk of not correctly identifying tactics to minimise the incidence of pest infestation.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.