108 resultados para Water demand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report we analyse the private financial-economic impacts of transitioning to improved sugarcane management in the National Resource Management regions of the Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. In order to do so, we: 1) compare farm GMs; 2) present information on capital investment associated with the transition; 3) perform a net present value analysis of the investments and; 4) undertake a risk analysis for cane and legume yields and prices. It must be noted that transaction costs are not captured within this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive summary. In this report we analyse implementation costs and benefits for agricultural management practices, grouped into farming systems. In order to do so, we compare plot scale gross margins for the dominant agricultural production systems (sugarcane, grazing and banana cultivation) in the NRM regions Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. Furthermore, where available, we present investment requirements for changing to improved farming systems. It must be noted that transaction costs are not captured within this project. For sugarcane, this economic analysis shows that there are expected benefits to sugarcane growers in the different regions through transitions to C and B class farming systems. Further transition to A-class farming systems can come at a cost, depending on the capital investment required and the length of the investment period. Obviously, the costs and benefits will vary for each individual grower and will depend on their starting point and individual property scenario therefore each circumstance needs to be carefully considered before making a change in management practice. In grazing, overall, reducing stocking rates comes at a cost (reduced benefits). However, when operating at low utilisation rates in wetter country, lowering stocking rates can potentially come at a benefit. With win-win potential, extension is preferred to assist farmer in changing management practices to improve their land condition. When reducing stocking rates comes at a cost, incentives may be applicable to support change among farmers. For banana cultivation, the results indicate that the transition to C and B class management practices is a worthwhile proposition from an economic perspective. For a change from B to A class farming systems however, it is not worthwhile from a financial perspective. This is largely due to the large capital investment associated with the change in irrigation system and negative impact in whole of farm gross margin. Overall, benefits will vary for each individual grower depending on their starting point and their individual property scenario. The results presented in this report are one possible set of figures to show the changes in profitability of a grower operating in different management classes. The results in this report are not prescriptive of every landholder. Landholders will have different costs and benefits from transitioning to improved practices, even if similar operations are practiced, hence it is recommended that landholders that are willing to change management undertake their own research and analysis into the expected costs and benefits for their own soil types and property circumstances.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurring water stresses are a major risk factor for rainfed maize cropping across the highly diverse agro-ecological environments of Queensland (Qld) and northern New South Wales (NNSW). Enhanced understanding of such agro-ecological diversity is necessary to more consistently sample target production environments for testing and targeting release of improved germplasm, and to improve the efficiency of the maize pre-breeding and breeding programs of Qld and New South Wales. Here, we used the Agricultural Production Systems Simulator (APSIM) – a well validated maize crop model to characterize the key distinctive water stress patterns and risk to production across the main maize growing regions of Qld and NNSW located between 15.8° and 31.5°S, and 144.5° and 151.8°E. APSIM was configured to simulate daily water supply demand ratios (SDRs) around anthesis as an indicator of the degree of water stress, and the final grain yield. Simulations were performed using daily climatic records during the period between 1890 and 2010 for 32 sites-soils in the target production regions. The runs were made assuming adequate nitrogen supply for mid-season maize hybrid Pioneer 3153. Hierarchical complete linkage analyses of the simulated yield resulted in five major clusters showing distinct probability distribution of the expected yields and geographic patterns. The drought stress patterns and their frequencies using SDRs were quantified using multivariate statistical methods. The identified stress patterns included no stress, mid-season (flowering) stress, and three terminal stresses differing in terms of severity. The combined frequency of flowering and terminal stresses was highest (82.9%), mainly in sites-soils combinations in the west of Qld and NNSW. Yield variability across the different sites-soils was significantly related to the variability in frequencies of water stresses. Frequencies of water stresses within each yield cluster tended to be similar, but different across clusters. Sites-soils falling within each yield cluster therefore could be treated as distinct maize production environments for testing and targeting newly developed maize cultivars and hybrids for adaptation to water stress patterns most common to those environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotypeenvironment range covered 350750 stems m(2) and 25210mg g(1) WSCc. Stem WSCc was inversely related to stem number m(2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tilleringhigh WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tilleringlow WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.390.44; standard error of the difference0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a ocut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical studies of rainfed maize yields in the United States(1) and elsewhere(2) have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30 degrees C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2 degrees C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of research into the water relations and irrigation requirements of lychee are collated and reviewed. The stages of plant development are summarised, with an emphasis on factors influencing the flowering process. This is followed by reviews of plant water relations, water requirements, water productivity and, finally, irrigation systems. The lychee tree is native to the rainforests of southern China and northern Vietnam, and the main centres of production remain close to this area. In contrast, much of the research on the water relations of this crop has been conducted in South Africa, Australia and Israel where the tree is relatively new. Vegetative growth occurs in a series of flushes. Terminal inflorescences are borne on current shoot growth under cool (<15 °C), dry conditions. Trees generally do not produce fruit in the tropics at altitudes below 300 m. Poor and erratic flowering results in low and irregular fruit yields. Drought can enhance flowering in locations with dry winters. Roots can extract water from depths greater than 2 m. Diurnal trends in stomatal conductance closely match those of leaf water status. Both variables mirror changes in the saturation deficit of the air. Very little research on crop water requirements has been reported. Crop responses to irrigation are complex. In areas with low rainfall after harvest, a moderate water deficit before floral initiation can increase flowering and yield. In contrast, fruit set and yield can be reduced by a severe water deficit after flowering, and the risk of fruit splitting increased. Water productivity has not been quantified. Supplementary irrigation in South-east Asia is limited by topography and competition for water from the summer rice crop, but irrigation is practised in Israel, South Africa, Australia and some other places. Research is needed to determine the benefits of irrigation in different growing areas. Copyright © Cambridge University Press 2013.