70 resultados para Susceptibility Modelling
Resumo:
The financial health of beef cattle enterprises in northern Australia has declined markedly over the last decade due to an escalation in production and marketing costs and a real decline in beef prices. Historically, gains in animal productivity have offset the effect of declining terms of trade on farm incomes. This raises the question of whether future productivity improvements can remain a key path for lifting enterprise profitability sufficient to ensure that the industry remains economically viable over the longer term. The key objective of this study was to assess the production and financial implications for north Australian beef enterprises of a range of technology interventions (development scenarios), including genetic gain in cattle, nutrient supplementation, and alteration of the feed base through introduced pastures and forage crops, across a variety of natural environments. To achieve this objective a beef systems model was developed that is capable of simulating livestock production at the enterprise level, including reproduction, growth and mortality, based on energy and protein supply from natural C4 pastures that are subject to high inter-annual climate variability. Comparisons between simulation outputs and enterprise performance data in three case study regions suggested that the simulation model (the Northern Australia Beef Systems Analyser) can adequately represent the performance beef cattle enterprises in northern Australia. Testing of a range of development scenarios suggested that the application of individual technologies can substantially lift productivity and profitability, especially where the entire feedbase was altered through legume augmentation. The simultaneous implementation of multiple technologies that provide benefits to different aspects of animal productivity resulted in the greatest increases in cattle productivity and enterprise profitability, with projected weaning rates increasing by 25%, liveweight gain by 40% and net profit by 150% above current baseline levels, although gains of this magnitude might not necessarily be realised in practice. While there were slight increases in total methane output from these development scenarios, the methane emissions per kg of beef produced were reduced by 20% in scenarios with higher productivity gain. Combinations of technologies or innovative practices applied in a systematic and integrated fashion thus offer scope for providing the productivity and profitability gains necessary to maintain viable beef enterprises in northern Australia into the future.
Resumo:
An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid rangelands. Livestock production is thought to increase the susceptibility of the rangelands to wind erosion by reducing vegetation cover and modifying surface soil stability. However, research is yet to quantify the impacts of grazing land management on the erodibility of the Australian rangelands, or determine how these impacts vary among land types and over time. We present a simulation analysis that links a pasture growth and animal production model (GRASP) to the Australian Land Erodibility Model (AUSLEM) to evaluate the impacts of stocking rate, stocking strategy and land condition on the erodibility of four land types in western Queensland, Australia. Our results show that declining land condition, over stocking, and using inflexible stocking strategies have potential to increase land erodibility and amplify accelerated soil erosion. However, land erodibility responses to grazing are complex and influenced by land type sensitivities to different grazing strategies and local climate characteristics. Our simulations show that land types which are more resilient to livestock grazing tend to be least susceptible to accelerated wind erosion. Increases in land erodibility are found to occur most often during climatic transitions when vegetation cover is most sensitive to grazing pressure. However, grazing effects are limited during extreme wet and dry periods when the influence of climate on vegetation cover is strongest. Our research provides the opportunity to estimate the effects of different land management practices across a range of land types, and provides a better understanding of the mechanisms of accelerated erosion resulting from pastoral activities. The approach could help further assessment of land erodibility at a broader scale notably if combined with wind erosion models.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Heat stress can cause sterility in sorghum and the anticipated increased frequency of high temperature events implies increasing risk to sorghum productivity in Australia. Here we summarise our research on specific varietal attributes associated with heat stress tolerance in sorghum and evaluate how they might affect yield outcomes in production environments by a crop simulation analysis. We have recently conducted a range of controlled environment and field experiments to study the physiology and genetics of high temperature effects on growth and development of sorghum. Sorghum seed set was reduced by high temperature effects (>36-38oC) on pollen germination around flowering, but genotypes differed in their tolerance to high temperature stress. Effects were quantified in a manner that enabled their incorporation into the APSIM sorghum crop model. Simulation analysis indicated that risk of high temperature damage and yield loss depended on sowing date, and variety. While climate trends will exacerbate high temperature effects, avoidance by crop management and genetic tolerance seems possible.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
BACKGROUND Our aim was to ascertain the potential of sulfuryl fluoride (SF) as an alternative fumigant to manage phosphine-resistant pests. We tested the susceptibility of all life stages of red flour beetle, Tribolium castaneum (Herbst), to SF and assessed the presence of cross-resistance to this fumigant in phosphine-resistant strains of this species. RESULTS Analysis of dose–response data indicated that the egg was the stage most tolerant to SF under a 48 h exposure period. At LC50, eggs were 29 times more tolerant than other immature stages and adults, and required a relatively high concentration of 48.2 mg L−1 for complete mortality. No significant differences in tolerance to SF were observed among the three larval instars, pupae and adults, and all of these stages were controlled at a low concentration of 1.32 mg L−1. Phosphine-resistant strains did not show cross-resistance to SF. CONCLUSION Our research concluded that the current maximum registered rate of SF, 1500 gh m−3, is adequate to control all the post-embryonic life stages of T. castaneum over a 48 h fumigation period, but it will fail to achieve complete mortality of eggs, indicating the risk of some survival of eggs under this short exposure period. As there is no cross-resistance to SF in phosphine-resistant insects, it will play a key role in managing phosphine resistance in stored-grain insect pests. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Antimicrobial resistance in bacterial porcine respiratory pathogens has been shown to exist in many countries. However, little is known about the variability in antimicrobial susceptibility within a population of a single bacterial respiratory pathogen on a pig farm. This study examined the antimicrobial susceptibility of Actinobacillus pleuropneumoniae using multiple isolates within a pig and across the pigs in three different slaughter batches. Initially, the isolates from the three batches were identified, serotyped, and subsample genotyped. All the 367 isolates were identified as A. pleuropneumoniae serovar 1, and only a single genetic profile was detected in the 74 examined isolates. The susceptibility of the 367 isolates of A. pleuropneumoniae to ampicillin, tetracycline and tilmicosin was determined by a disc diffusion technique. For tilmicosin, the three batches were found to consist of a mix of susceptible and resistant isolates. The zone diameters of the three antimicrobials varied considerably among isolates in the second sampling. In addition, the second sampling provided statistically significant evidence of bimodal populations in terms of zone diameters for both tilmicosin and ampicillin. The results support the hypothesis that the antimicrobial susceptibility of one population of a porcine respiratory pathogen can vary within a batch of pigs on a farm.
Resumo:
Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.