99 resultados para RAIN WATER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report we analyse the private financial-economic impacts of transitioning to improved sugarcane management in the National Resource Management regions of the Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. In order to do so, we: 1) compare farm GMs; 2) present information on capital investment associated with the transition; 3) perform a net present value analysis of the investments and; 4) undertake a risk analysis for cane and legume yields and prices. It must be noted that transaction costs are not captured within this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive summary. In this report we analyse implementation costs and benefits for agricultural management practices, grouped into farming systems. In order to do so, we compare plot scale gross margins for the dominant agricultural production systems (sugarcane, grazing and banana cultivation) in the NRM regions Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. Furthermore, where available, we present investment requirements for changing to improved farming systems. It must be noted that transaction costs are not captured within this project. For sugarcane, this economic analysis shows that there are expected benefits to sugarcane growers in the different regions through transitions to C and B class farming systems. Further transition to A-class farming systems can come at a cost, depending on the capital investment required and the length of the investment period. Obviously, the costs and benefits will vary for each individual grower and will depend on their starting point and individual property scenario therefore each circumstance needs to be carefully considered before making a change in management practice. In grazing, overall, reducing stocking rates comes at a cost (reduced benefits). However, when operating at low utilisation rates in wetter country, lowering stocking rates can potentially come at a benefit. With win-win potential, extension is preferred to assist farmer in changing management practices to improve their land condition. When reducing stocking rates comes at a cost, incentives may be applicable to support change among farmers. For banana cultivation, the results indicate that the transition to C and B class management practices is a worthwhile proposition from an economic perspective. For a change from B to A class farming systems however, it is not worthwhile from a financial perspective. This is largely due to the large capital investment associated with the change in irrigation system and negative impact in whole of farm gross margin. Overall, benefits will vary for each individual grower depending on their starting point and their individual property scenario. The results presented in this report are one possible set of figures to show the changes in profitability of a grower operating in different management classes. The results in this report are not prescriptive of every landholder. Landholders will have different costs and benefits from transitioning to improved practices, even if similar operations are practiced, hence it is recommended that landholders that are willing to change management undertake their own research and analysis into the expected costs and benefits for their own soil types and property circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peanut (Arachis hypogaea L.) is an economically important legume crop in irrigated production areas of northern Australia. Although the potential pod yield of the crop in these areas is about 8 t ha(-1), most growers generally obtain around 5 t ha(-1), partly due to poor irrigation management. Better information and tools that are easy to use, accurate, and cost-effective are therefore needed to help local peanut growers improve irrigation management. This paper introduces a new web-based decision support system called AQUAMAN that was developed to assist Australian peanut growers schedule irrigations. It simulates the timing and depth of future irrigations by combining procedures from the food and agriculture organization (FAO) guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems simulator (APSIM) modeling framework. Here, we present a description of AQUAMAN and results of a series of activities (i.e., extension activities, case studies, and a survey) that were conducted to assess its level of acceptance among Australian peanut growers, obtain feedback for future improvements, and evaluate its performance. Application of the tool for scheduling irrigations of commercial peanut farms since its release in 2004-2005 has shown good acceptance by local peanuts growers and potential for significantly improving yield. Limited comparison with the farmer practice of matching the pan evaporation demand during rain-free periods in 2006-2007 and 2008-2009 suggested that AQUAMAN enabled irrigation water savings of up to 50% and the realization of enhanced water and irrigation use efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotypeenvironment range covered 350750 stems m(2) and 25210mg g(1) WSCc. Stem WSCc was inversely related to stem number m(2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tilleringhigh WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tilleringlow WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.390.44; standard error of the difference0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a ocut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of research into the water relations and irrigation requirements of lychee are collated and reviewed. The stages of plant development are summarised, with an emphasis on factors influencing the flowering process. This is followed by reviews of plant water relations, water requirements, water productivity and, finally, irrigation systems. The lychee tree is native to the rainforests of southern China and northern Vietnam, and the main centres of production remain close to this area. In contrast, much of the research on the water relations of this crop has been conducted in South Africa, Australia and Israel where the tree is relatively new. Vegetative growth occurs in a series of flushes. Terminal inflorescences are borne on current shoot growth under cool (<15 °C), dry conditions. Trees generally do not produce fruit in the tropics at altitudes below 300 m. Poor and erratic flowering results in low and irregular fruit yields. Drought can enhance flowering in locations with dry winters. Roots can extract water from depths greater than 2 m. Diurnal trends in stomatal conductance closely match those of leaf water status. Both variables mirror changes in the saturation deficit of the air. Very little research on crop water requirements has been reported. Crop responses to irrigation are complex. In areas with low rainfall after harvest, a moderate water deficit before floral initiation can increase flowering and yield. In contrast, fruit set and yield can be reduced by a severe water deficit after flowering, and the risk of fruit splitting increased. Water productivity has not been quantified. Supplementary irrigation in South-east Asia is limited by topography and competition for water from the summer rice crop, but irrigation is practised in Israel, South Africa, Australia and some other places. Research is needed to determine the benefits of irrigation in different growing areas. Copyright © Cambridge University Press 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two key quality traits in milling wheat are flour yield (FY) and water absorption (WA). Ideally, breeders would prefer to use markers to select promising lines rather than time consuming rheology tests. In this study, we measured FY and WA on a wheat mapping population (Lang/QT8766) of 162 individuals grown in two replicated field experiments at three locations over 2 years. We also carried out near infrared reflectance spectroscopy (NIRS) predictions on the grain for these traits to see if NIRS phenotypic data could provide useful mapping results when compared to the reference phenotypic data. Several common QTLs were identified for FY and WA by both sets of data. The QTL on chromosome 4D was a consistently recurring QTL region for both traits. The QTL on chromosome 2A was positively linked to protein content which was supported by genetic correlation data. The results also indicated it was possible to obtain useful phenotypic data for mapping FY and WA using NIRS data. This would save time and costs as NIRS is quicker and cheaper than current rheology methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of "stay-green" in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate "stay-green"-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of "stay-green" expression on grain quality under extreme physiological stress is limited. This study examines impacts of "stay-green"-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without "stay-green"-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the "stay-green"-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with "stay-green"-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the "stay-green"-like traits potentially useful in ensuring food security. (C) 2013 Elsevier Ltd. All rights reserved.