83 resultados para Population Spread


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Nino Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Irregular plagues of house mice cause high production losses in grain crops in Australia. If plagues can be forecast through broad-scale monitoring or model-based prediction, then mice can be proactively controlled by poison baiting. Aims. To predict mouse plagues in grain crops in Queensland and assess the value of broad-scale monitoring. Methods. Regular trapping of mice at the same sites on the Darling Downs in southern Queensland has been undertaken since 1974. This provides an index of abundance over time that can be related to rainfall, crop yield, winter temperature and past mouse abundance. Other sites have been trapped over a shorter time period elsewhere on the Darling Downs and in central Queensland, allowing a comparison of mouse population dynamics and cross-validation of models predicting mouse abundance. Key results. On the regularly trapped 32-km transect on the Darling Downs, damaging mouse densities occur in 50% of years and a plague in 25% of years, with no detectable increase in mean monthly mouse abundance over the past 35 years. High mouse abundance on this transect is not consistently matched by high abundance in the broader area. Annual maximum mouse abundance in autumn–winter can be predicted (R2 = 57%) from spring mouse abundance and autumn–winter rainfall in the previous year. In central Queensland, mouse dynamics contrast with those on the Darling Downs and lack the distinct annual cycle, with peak abundance occurring in any month outside early spring.Onaverage, damaging mouse densities occur in 1 in 3 years and a plague occurs in 1 in 7 years. The dynamics of mouse populations on two transects ~70 km apart were rarely synchronous. Autumn–winter rainfall can indicate mouse abundance in some seasons (R2 = ~52%). Conclusion. Early warning of mouse plague formation in Queensland grain crops from regional models should trigger farm-based monitoring. This can be incorporated with rainfall into a simple model predicting future abundance that will determine any need for mouse control. Implications. A model-based warning of a possible mouse plague can highlight the need for local monitoring of mouse activity, which in turn could trigger poison baiting to prevent further mouse build-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial formulations of methoprene have been used in a number of countries such as Australia and the USA to provide long-term protection to grain from a range of storage pests. The level of resistance in Rhyzopertha dominica (F.), the lesser grain borer, was investigated in laboratory experiments by direct exposure of adults on treated wheat. Adults of a reference homozygous resistant strain of R.dominica were exposed to treatments of 0, 2, 3, 5, 10, 20 and 40kg-1 of s-methoprene for 7 days. Mortality and progeny production were dose dependent with 98.7% mortality and complete progeny suppression at 40mgkg-1, which is 67 times the registered rate at which s-methoprene is applied as a grain protectant in Australia (0.6mgkg-1) and eight times the rate which has been used in the USA (5mgkg-1). This strain was also tested by adding adults to wheat treated at 0, 1, 3, 10 and 30mgkg-1 and determining the number of adults (progeny plus original parental adults) after 6, 8, 10 or 12 weeks of continuous exposure. The effect of s-methoprene was consistent regardless of the number of weeks of continuous exposure and average population suppression was 99.5% at 30mgkg-1. Screening of 162 field samples collected from southeast Australia in 2009 showed that 93% of samples reproduced when exposed to wheat treated with the Australian registered rate of 0.6mgkg-1. When four unselected resistant field samples from this region were tested, progeny production but not mortality was dose dependent, and all four samples produced live progeny at the highest dose of 30mgkg-1. Our results show that methoprene resistance is a serious threat to the management of R.dominica, and that strategies need to be developed to minimise the further development and spread of resistance. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two key quality traits in milling wheat are flour yield (FY) and water absorption (WA). Ideally, breeders would prefer to use markers to select promising lines rather than time consuming rheology tests. In this study, we measured FY and WA on a wheat mapping population (Lang/QT8766) of 162 individuals grown in two replicated field experiments at three locations over 2 years. We also carried out near infrared reflectance spectroscopy (NIRS) predictions on the grain for these traits to see if NIRS phenotypic data could provide useful mapping results when compared to the reference phenotypic data. Several common QTLs were identified for FY and WA by both sets of data. The QTL on chromosome 4D was a consistently recurring QTL region for both traits. The QTL on chromosome 2A was positively linked to protein content which was supported by genetic correlation data. The results also indicated it was possible to obtain useful phenotypic data for mapping FY and WA using NIRS data. This would save time and costs as NIRS is quicker and cheaper than current rheology methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings:Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and FST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise FST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04).Conclusions: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable management of sea mullet (Mugil cephalus) fisheries needs to account for recent observations of regional-scale differentiation. Population genetic analysis is sought to assess the situation of this ecologically and economically important fish species in eastern Australian waters. Here, we report (i) new population genetic markers [single nucleotide polymorphisms (SNPs) and potential microsatellites], (ii) first estimates of spatial genetic differentiation and (iii) prospective power tests for designing more comprehensive studies. Six DNA samples from three sampling regions (North Queensland, South Queensland and central New South Wales) on the eastern coast of Australia were used to prepare restriction site associated DNA (RAD) tag libraries from genomic DNA digested with EcoRI and MseI. A pooled sample of regional RAD tag libraries was sequenced using the Roche GS-FLX Titanium platform. A total of 172837 raw reads (17.4Mbp) were retrieved, 95500 of which were used to discover 1267 SNPs and 1417 microsatellites. A subset of 161 SNPs was validated based on 63 additional DNA samples genotyped using the Sequenom MassArray (iPLEX Gold chemistry). Altogether 92 SNPs (57%) were confirmed, with 40% of these marking fixed variants between northern and southern sampling regions. Our preliminary findings indicate a multispecies fishery stock of M. cephalus in eastern Australian waters, but suggest that strong genetic differentiation occurs north of major fishing grounds. Low potential differentiation within major fishing grounds (e.g. FST=0.0025) can be resolved with a likely power 67% by using standard sample sizes of 50 and validated subsets of available markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyphosate resistance is a rapidly developing threat to profitability in Australian cotton farming. Resistance causes an immediate reduction in the effectiveness of in-crop weed control in glyphosate-resistant transgenic cotton and summer fallows. Although strategies for delaying glyphosate resistance and those for managing resistant populations are qualitatively similar, the longer resistance can be delayed, the longer cotton growers will have choice over which tactics to apply and when to apply them. Effective strategies to avoid, delay, and manage resistance are thus of substantial value. We used a model of glyphosate resistance dynamics to perform simulations of resistance evolution in Sonchus oleraceus (common sowthistle) and Echinochloa colona (awnless barnyard grass) under a range of resistance prevention, delaying, and management strategies. From these simulations, we identified several elements that could contribute to effective glyphosate resistance prevention and management strategies. (i) Controlling glyphosate survivors is the most robust approach to delaying or preventing resistance. High-efficacy, high-frequency survivor control almost doubled the useful lifespan of glyphosate from 13 to 25 years even with glyphosate alone used in summer fallows. (ii) Two non-glyphosate tactics in-crop plus two in-summer fallows is the minimum intervention required for long-term delays in resistance evolution. (iii) Pre-emergence herbicides are important, but should be backed up with non-glyphosate knockdowns and strategic tillage; replacing a late-season, pre-emergence herbicide with inter-row tillage was predicted to delay glyphosate resistance by 4 years in awnless barnyard grass. (iv) Weed species' ecological characteristics, particularly seed bank dynamics, have an impact on the effectiveness of resistance strategies; S. oleraceus, because of its propensity to emerge year-round, was less exposed to selection with glyphosate than E. colona, resulting in an extra 5 years of glyphosate usefulness (18 v. 13 years) even in the most rapid cases of resistance evolution. Delaying tactics are thus available that can provide some or many years of continued glyphosate efficacy. If glyphosate-resistant cotton cropping is to remain profitable in Australian farming systems in the long-term, however, growers must adapt to the probability that they will have to deal with summer weeds that are no longer susceptible to glyphosate. Robust resistance management systems will need to include a diversity of weed control options, used appropriately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February-April) for the Pretoria site, summer (November-January) for the Zululand site and spring (August-October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do alien invasive species exhibit life history characteristics that are similar to those of native species that have become pests in their continent of origin? We compared eucalypt specialists that have become pests in Australian plantations (natives) to those that have established overseas (aliens) using 13 life history traits and found that although traits that support rapid population build-up were shared, overall, aliens and native colonisers differed significantly. Distance from source (New Zealand vs. other) had no significant effect, but species that established more than 50 years ago exhibited different life history traits from those that established within the last 50 years, possibly because of more effective quarantine. Native and alien eucalypt insect invaders differed predominantly in traits that facilitate long-distance movement (pathway traits), compared to traits that facilitate establishment and spread. Aliens had longer adult flight seasons, were smaller and more closely host-associated (cryptic eggs and larvae), had lower incidence of diapause (i.e. were more seasonally plastic) and more generations per year than natives. Thus, studies of species invasive within their country of origin can shed light on alien invasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postharvest diseases remain a significant constraint to the transport, storage and marketing of mangoes. The two main ones are anthracnose and stem end rot. Anthracnose caused by Colletotrichum gloeosporioides is the more wide-spread of the two. Varieties within Mangifera indica are known to vary in their level of reactions to anthracnose; however, the best tolerance in current commercial cultivars is not sufficient to eliminate the need for pre- and postharvest fungicides treatments. A screening program was initiated in mango accessions in the Australian National Mango Genebank to look for any significant resistance to C. gloeosporioides in fruit as they ripened. Screening was conducted by rating reactions to natural infection of anthracnose and reactions to artificially inoculating fruit with virulent isolates of C. gloeosporioides. A range of reactions to the pathogen were identified, with strong resistance found in one accession of the species M. laurina. This accession was used as the pollen parent in a controlled crossing program with a M. indica hybrid from the Australian Mango Breeding Program (AMBP). Sixty successful hybrids between the species have been generated. The hybrid population will be screened for resistance to anthracnose and used for gene discovery investigations to identify markers for anthracnose resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Managing large variations in herbage production, resulting from highly variable seasonal rainfall, provides a major challenge for the sustainable management of Astrebla (Mitchell grass) grasslands in Australia. A grazing study with sheep was conducted between 1984 and 2010 on an Astrebla grassland in northern Queensland to describe the effects of a range of levels of utilisation of the herbage at the end of the summer growing season (April–May in northern Australia) on the sustainability of these grasslands. In unreplicated paddocks, sheep numbers were adjusted annually to achieve 0, 10, 20, 30, 50 and 80% utilisation of the herbage mass at the end of the summer over the ensuing 12 months. Higher levels of utilisation reduced both total and Astrebla spp. herbage mass because of the effects of higher utilisation on Astrebla spp. and this effect was accentuated by drought. The tussock density of Astrebla spp. varied widely among years but with few treatment differences until 2005 when density was reduced at the 50% level of utilisation. A major change in density resulted from a large recruitment of Astrebla spp. in 1989 that influenced its density for the remainder of the study. Basal area of the tussocks fluctuated among years, with increases due to rainfall and decreases during droughts. Seasonal rainfall was more influential than level of utilisation in changes to the basal area of perennial grasses. Drought resulted in the death of Astrebla spp. tussocks and this effect was accentuated at higher levels of utilisation. A series of three grazing exclosures were used to examine the recovery of the density and basal area of Astrebla spp. after it had been reduced by 80% utilisation over the preceding 9 years. This recovery study indicated that, although grazing exclusion was useful in the recovery of Astrebla spp., above-average rainfall was the major factor driving increases in the basal area of perennial grasses. Spring values of the Southern Oscillation Index and associated rainfall probabilities were considered to have potential for understanding the dynamics of Astrebla spp. It was concluded that Astrebla grassland remained sustainable after 26 years when grazed at up to 30% utilisation, while, at 50% utilisation, they became unsustainable after 20 years. Results from this study emphasised the need to maintain the population of Astrebla spp. tussocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes) may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.