142 resultados para Plant morphology.
Resumo:
Developing a National Banana Plant Protection Program four key strategic areas have been identified which each address a number of key strategic objectives. Taken together they address the key strategic objectives as outlined in the strategic plan. The four key strategic areas of the Plant Protection Program are: 1. Resistant Varieties and Consumer Choice; 2. Safeguarding Production and Markets; 3. Sustainable Production Systems; 4. Building Science and Communication.
Resumo:
Grey mould, powdery mildew and stem-end rot are major diseases affecting the strawberry industry. Some of the chemicals used are ineffective under wet weather, have limits to the number of applications allowed in a season or may become ineffective in the long-term because of the development of resistance in the fungi. We will assess the effectiveness of the chemicals currently used by the strawberry industry and whether the fruit rot fungi are resistant to these fungicides. We will screen other chemicals that are used to control these diseases in related crops. We will also evaluate new chemicals in collaboration with the crop protectant industry. We will also undertake similar work to control nematodes in strawberry fields.
Resumo:
Development of a national diagnostic database for Emergency Plant Pests which will be web-accessible.
Resumo:
This project will define the plant pathogen incursion risk posed by people returning from overseas and interstate travel. This will be achieved through the development of technically sound sample/survey methodologies. The project will initially focus on cereal rusts. An assessment of the current level of human mediated rust entries into Australia will be determined through the sampling of travellers who have been known to have visited grain production regions overseas.
Resumo:
The seeds of the majority of commercial crops must be grown for one generation in post-entry plant quarantine on arrival in Australia. Live plants and cuttings must also undergo quarantine screening on arrival, and spend a minimum of three months in quarantine.
Resumo:
Taxonomic revision of ergots and related fungi in Australia.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
Direct measurement of plant water status for irrigation scheduling may be more sensitive, and promote better horticultural crop quality, than indirect methods such as soil moisture monitoring. In our research project, we sought to identify instances where direct methods of plant-water status previously used in horticultural crops in Australia. We present the outcomes, suitability or obstacles for adoption by horticultural producers.
Resumo:
In the nursery industry, generic research conducted by government institutions is often not specific enough to be highly valued and adopted by the individual operator. Operators need practical solutions to their particular problems. Such problems almost invariably involve sets of conditions common to few other enterprises. This uniqueness reflects the almost infinite variation of options available in terms of species grown, media used, fertiliser, amendments and chemicals applied and the way water is supplied. The DOOR (Do Our Own Research) method advocates a relatively unexplored way of generating new, statistically sound research information in the nursery industry. The manual aims to enhance nursery operators' understanding and skills development in the following areas: critially evaluating opportunities and problems in the nursery environment, gathering relevant information, deriving and prioritising potential solutions to problems and opportunities, becoming familiar with the scientific method employed in testing potential solutions, carrying out statistically sound aand rigorous research, and developing recommendations that flow from the research information generated. The DOOR approach has application in a number of other industries and may provide important support at a time of declining research, development and extension investment by the public sector.
Resumo:
Review of the biology of the Australian weed Baccharis halimifolia. This paper reviews the morphology, geographical distribution, habitat, growth and development, reproduction (flowering, seed production and dispersal, and seed germination), hybrids, population dynamics, importance (detrimental and beneficial), legislation, and control (using mechanical methods, herbicides and biological control agents/natural enemies) of an invasive alien species, B. shall.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.
Resumo:
The effectiveness of pre-plant dips of crowns in potassium phosphonate and phosphorous acid was investigated in a systematic manner to develop an effective strategy for the control of root and heart rot diseases caused by Phytophthora cinnamomi in the pineapple hybrids 'MD2' and '73-50' and cultivar Smooth Cayenne. Our results clearly indicate that a high volume spray at planting was much less effective when compared to a pre-plant dip. 'Smooth Cayenne' was found to be more resistant to heart rot than 'MD2' and '73-50', and 'Smooth Cayenne' to be more responsive to treatment with potassium phosphonate. Based on cumulative heart rot incidence over time 'MD2' was more susceptible to heart rot than '73-50' and was more responsive to an application of phosphorous acid. The highest levels of phosphonate in roots were reached one month after planting and levels declined during the next two months. Pre-plant dipping of crowns prior to planting is highly effective to control root and heart rot in the first few months but is not sufficient to maintain health of the mother plant root system up until plant crop harvest when weather conditions continue to favour infection.
Resumo:
In Queensland the subtropical strawberry ( Fragaria * ananassa) breeding program aims to combine traits into novel genotypes that increase production efficiency. The contribution of individual plant traits to cost and income under subtropical Queensland conditions was investigated, with the overall goal of improving the profitability of the industry through the release of new strawberry cultivars. The study involved specifying the production and marketing system using three cultivars of strawberry that are currently widely grown annually in southeast Queensland, developing methods to assess the economic impact of changes to the system, and identifying plant traits that influence outcomes from the system. From May through September P (price; $ punnet -1), V (monthly mass; tonne of fruit on the market) and M (calendar month; i.e. May=5) were found to be related ( r2=0.92) by the function (SE) P=4.741(0.469)-0.001630(0.0005) V-0.226(0.102) M using data from 2006 to 2010 for the Brisbane central market. Both income and cost elements in the gross margin were subject to sensitivity analysis. 'Harvesting' and 'Handling/Packing' 'Groups' of 'Activities' were the major contributors to variable costs (each >20%) in the gross margin analysis. Within the 'Harvesting Group', the 'Picking Activity' contributed most (>80%) with the trait 'display of fruit' having the greatest (33%) influence on the cost of the 'Picking Activity'. Within the 'Handling/Packing Group', the 'Packing Activity' contributed 50% of costs with the traits 'fruit shape', 'fruit size variation' and 'resistance to bruising' having the greatest (12-62%) influence on the cost of the 'Packing Activity'. Non-plant items (e.g. carton purchases) made up the other 50% of the costs within the 'Handling/Packing Group'. When any of the individual traits in the 'Harvesting' and 'Handling/Packing' groups were changed by one unit (on a 1-9 scale) the gross margin changed by up to 1%. Increasing yield increased the gross margin to a maximum (15% above present) at 1320 g plant -1 (94% above present). A 10% redistribution of total yield from September to May increased the gross margin by 23%. Increasing fruit size increased gross margin: a 75% increase in fruit size (to ~30 g) produced a 22% increase in the gross margin. The modified gross margin analysis developed in this study allowed simultaneous estimation of the gross margin for the producer and gross value of the industry. These parameters sometimes move in opposite directions.
Resumo:
The identification of Diaporthe (anamorph Phomopsis) species associated with stem canker of sunflower (Helianthus annuus) in Australia was studied using morphology, DNA sequence analysis and pathology. Phylogenetic analysis revealed three clades that did not correspond with known taxa, and these are believed to represent novel species. Diaporthe gulyae sp. nov. is described for isolates that caused a severe stem canker, specifically pale brown to dark brown, irregularly shaped lesions centred at the stem nodes with pith deterioration and mid-stem lodging. This pathogenicity of D. gulyae was confirmed by satisfying Koch's Postulates. These symptoms are almost identical to those of sunflower stem canker caused by D. helianthi that can cause yield reductions of up to 40% in Europe and the USA, although it has not been found in Australia. We show that there has been broad misapplication of the name D. helianthi to many isolates of Diaporthe ( Phomopsis) found causing, or associated with, stem cankers on sunflower. In GenBank, a number of isolates had been identified as D. helianthi, which were accommodated in several clades by molecular phylogenetic analysis. Two less damaging species, D. kochmanii sp. nov. and D. kongii sp. nov., are also described from cankers on sunflower in Australia.