122 resultados para Northern Quebec
Resumo:
To adapt to climate variability and a lack of irrigation water, businesses and growers in southern Australia, northern New South Wales and southern Queensland are, or are considering, migrating their businesses to northern Australia.
Resumo:
This project has the overall aim of reducing the impacts of diseases of winter cereals, pulses, sunflower sorghum and nematodes on farming systems in the GRDC northern region. Integrated disease management packages which involve combinations of resistance, targeted fungicide applications, cultural practices such as rotations, and disease modelling will be developed and extended to clients. Structured surveillance activities will enable the monitoring of the distribution and importance of diseases and pathotypes, the early detection of significant outbreaks of endemic and exotic diseases, and a rapid and appropriate response to these outbreaks.
Resumo:
This project focussed on the phosphorus (P) and potassium (K) status of northern cropping soils. Stores of P and K have been depleted by crop removal and limited fertiliser application, with depletion most significant in the subsoil. Soil testing strategies are confounded by slowly available mineral reserves with uncertain availability. The utility of new soil tests was assessed to measure these reserves, their availability to plants quantified and a regional sampling strategy undertaken to identify areas of greatest P and K deficit. Fertiliser application strategies for P and K have been tested and the interactions between these and other nutrients have been determined in a large field program.
Resumo:
The previous projects (phase I - III) highlighted that northern region wheat and barley cultivars differ considerably in their sensitivity to herbicides. The new project will focus on increased screening of advanced breeding lines and new cultivars lines to commonly used herbicides, for barley, chickpea and wheat. Studies on impact of environment on herbicide x genotype responses will also be undertaken with the national team. The new information will be added to the existing information package on herbicide tolerance. Thus, adverse impacts of herbicides on productivity in northern region will be reduced, as growers and agronomists will select safer herbicides for their sown variety, or select more tolerant varieties for their important herbicides.
Resumo:
Project to evaluate the role of brassica crops in the western farming system area.
Resumo:
This is part of a GRDC funded project led by Dr Jeremy Whish of CSIRO Ecosystem Sciences. The project aims to build a root-lesion nematode module into the crop growth simulation program APSIM (Agricultural Production Systems Simulator). This will utilise existing nematode and crop data from field, glasshouse and laboratory research led by Dr John Thompson. New data will be collected to validate and extend the model.
Resumo:
Strategic research on developing and improving chemical and non-chemical tactics, weed ecology and herbicide application for problem and emerging weeds of summer fallows in the main cropping regions of the northern region.
Resumo:
This project encompasses laboratory, glasshouse and field research to improve N fixation in grain and forage legumes in the northern region and assess compatability of rhizobial strains with current and new legume varieties.
Resumo:
The principal aim of the project was to contribute to the continuing adoption of integrated pest management (IPM) by grain growers in the GRDC's northern region, specifically, the Darling Downs and Central Queensland. This project provided an ongoing commitment to the development and refinement of pest management tactics, and continued support for the grower community by raising awareness of management options and strategies for their implementation. This outcome was achieved through facilitated learning by growers and their advisers via grower group meetings, field day demonstrations, technical literature and presentations by entomologists at technical forums.
Resumo:
Diseases remain a significant impediment to the achievement of maximum yield potential of pulses (chickpea, peanut and mungbean) and sunflowers in the GRDC northern region. This project worked closely with public and private breeding programs to identify sources of resistance to the major diseases of pulses and sunflower that dominate in the region. Through varied surveillance activities, a watching brief on pulse and sunflower diseases was maintained and a timely and appropriate response was made to several significant disease outbreaks. Information on the biology and management of diseases was extended to clients in a wide variety of ways.
Resumo:
The emerging disease program seeks to gain information on the distribution of cereal pathogens\pathotypes and potential for outbreaks across the norther region and options for their control. It is looking for an improved understanding of varietal (APR) reaction to stripe rust (YR) in prevailing weather conditions and in the face of climate change. Replicated field trials are used in the evaluation of varietal, cultural and chemical management of YR. Best management practice packages are disseminated to stake holders, including a YR predictive tool.
Resumo:
Research, development and extension to achieve the implementation of Integrated Pest Management in grains-cotton broadacre farming systems.
Resumo:
Workshops to increase participants understanding and knowledge by farm businesses and healthy catchments farmers about the role of soil health in supporting sustainable through variable circumstances, farm businesses and healthy catchments.
Resumo:
This project covered the 2006-2011 operations of the Northern Node of Barley Breeding Australia (BBA-North). BBANorth collaborated with the Southern and Western nodes and all BBA participants to deliver improved barley varieties to the Australian grains industry. BBA-North focused on the northern region and was the national leader in breeding high yielding, disease resistant barleys with grain quality that enhanced the crop's status as a preferred feed grain. Development of varieties for the malting and brewing industries was also targeted. This project incorporated coordination, breeding, regional evaluation, foliar and soil-borne disease tests, molecular marker screens and grain and malt quality analyses.
Resumo:
Post head-emergence frost causes substantial losses for Australian barley producers. Varieties with improved resistance would have a significant positive impact on Australian cropping enterprises. Five barley genotypes previously tested for reproductive frost resistance in southern Australia were tested, post head-emergence, in the northern grain region of Australia and compared with the typical northern control cultivars, Gilbert and Kaputar. All tested genotypes suffered severe damage to whole heads and stems at plant minimum temperatures less than -8degreesC. In 2003, 2004 and 2005, frost events reaching a plant minimum temperature of ~-6.5degreesC did not result in the complete loss of grain yield. Rather, partial seed set was observed. The control genotype, Gilbert, exhibited seed set that was greater than or equal to that of any genotype in each year, as did Kaputar when tested in 2005. Thus, Gilbert and Kaputar were at least as resistant as any tested genotype. This contrasts with trial results from the southern grain region where Gilbert was reported to be less resistant than Franklin, Amagi Nijo and Haruna Nijo. Hence, rankings for post head-emergence frost damage in the northern grain region differ from those previously reported. These results indicate that Franklin, Amagi Nijo and Haruna Nijo are not likely to provide useful sources of frost resistance or markers to develop improved varieties for the northern grain region of Australia.