89 resultados para Hairy Root Culture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A (m) -genome) and 5 (24%) Triticum urartu (A (u) -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the northern grain and cotton region of Australia, poor crop growth after long periods of fallow, called 'long-fallow' disorder, is caused by a decline of natural arbuscular-mycorrhizal fungi (AMF). When cotton was grown in large pots containing 22 kg of Vertisol from a field recently harvested from cotton in Central Queensland, plants in pasteurised soil were extremely stunted compared with plants in unpasteurised soil. We tested the hypothesis that this extreme stunting was caused by the absence of AMF and examined whether such stunted plants could recover from subsequent treatment with AMF spores and/or P fertiliser. At 42 days after sowing, the healthy cotton growing in unpasteurised soil had 48% of its root-length colonised with AMF, whereas the stunted cotton had none. After inoculation with AMF spores (6 spores/g soil of Glomus mosseae) and/or application of P fertiliser (50 mg P/kg soil) at 45 days after sowing, the stunted plants commenced to improve about 25 days after treatment, and continued until their total dry matter and seed cotton production equalled that of plants growing in unpasteurised soil with natural AMF. In contrast, non-mycorrhizal cotton grown without P fertiliser remained stunted throughout and produced no bolls and only 1% of the biomass of mycorrhizal cotton. Even with the addition of P fertiliser, non-mycorrhizal cotton produced only 64% of the biomass and 58% of the seed cotton (lint + seed) of mycorrhizal cotton plants. These results show that cotton is highly dependent on AMF for P nutrition and growth in Vertisol (even with high rates of P fertiliser), but can recover from complete lack of AMF and consequent stunting during at least the first 45 days of growth when treated with AMF spores and/or P fertiliser. This corroborates field observations in the northern region that cotton may recover from long-fallow disorder caused by low initial levels of AMF propagules in the soil as the AMF colonisation of its roots increases during the growing season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nematode species Pratylenchus thornei and P. neglectus are the two most important root-lesion nematodes affecting wheat (Triticum aestivum L.) and other grain crops in Australia. For practical plant breeding, it will be valuable to know the mode of inheritance of resistance and whether the same set of genes confer resistance to both species. We evaluated reactions to P. thornei and P. neglectus of glasshouse-inoculated plants of five doubled-haploid populations derived from five resistant synthetic hexpaloid wheat lines, each crossed to the susceptible Australian wheat cultivar Janz. For each cross we determined genetic variance, heritability and minimum number of effective resistance genes for each nematode species. Distributions of nematode numbers for both species were continuous for all doubled-haploid populations. Heritabilities were high and the resistances were controlled by 4-7 genes. There was no genetic correlation between resistance to P. thornei and to P. neglectus in four of the populations and a significant but low correlation in one. Therefore, resistances to P. thornei and to P. neglectus are probably inherited quantitatively and independently in four of these synthetic hexaploid wheat populations, with the possibility of at least one genetic factor contributing to resistance to both species in one of the populations. Parents with the greatest level of resistance will be the best to use as donor parents to adapted cultivars, and selection of resistance to both species in early generations will be optimal to carry resistance through successive cycles of inbreeding to produce resistant cultivars for release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calonectria ilicicola, Gliocladiopsis sp. and Ilyonectria liriodendri were isolated from diseased roots of young avocado trees. Pathogenicity studies with seedlings of three avocado cultivars, Velvick, Hass and Reed, demonstrated that Calonectria ilicicola is a severe root rot pathogen, reducing the biomass of healthy roots, and reducing plant height over time. Calonectria ilicicola was re-isolated from diseased roots. Ilyonectria liriodendri and Gliocladiopsis sp. were not pathogenic and plant height was increased after Gliocladiopsis sp. amendment compared to all other treatments in trials with cvs Velvick and Hass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a more efficient in vitro regeneration system for somatic embryos (SEs) of avocado (Persea americana) would facilitate the development of new superior cultivars for this valuable horticultural crop. In this study, we report a new and efficient method for maintenance and regeneration of avocado SEs. Avocado SEs of four cultivars remained healthy and viable in vitro for 11 months on a medium used for mango somatic embryogenesis, compared with 3-4 months on Murashige and Skoog medium. Various supplements and media modifications were investigated to improve the low conversion rate of regenerated plants from avocado SEs reported previously. The one-step system for regeneration of white-opaque somatic embryos (WOSEs) used solid medium only over a period of 12-14 weeks (sub-culturing every 6 weeks). Addition of praline and glutamine improved the total regeneration from 0 to 17.5% and 10.5%, and plant/shoot recovery from 0 to 12.5% and 5%, respectively. A two-step culture system involving the transfer of WOSEs of cultivar 'Reed' after 6 weeks on solid to liquid medium for 12-15 days as an intermediate step, followed by subculturing again onto solid medium for 6 weeks improved total regeneration to 29% and plant/shoot recovery to 18.3 from 0% when regenerated by subculturing on solid medium only. Supplementation with proline in the solid as well as liquid medium in the two-step culture system at 0.4 g/L increased total regeneration to 35% and plant/shoot recovery to 20%. We were able to achieve highest regeneration using glutamine at 1 g/L in the two-step culture system in terms of both total regeneration (58.3%, including 43.3% bipolar regeneration) and plant/shoot recovery (36.7%) rates, which were significantly higher than in any other treatment investigated. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plastic high tunnels on the performance of two strawberry (Fragaria ×ananassa) cultivars (Festival and Rubygem) and two breeding lines was studied in southeastern Queensland, Australia, over 2 years. Production in this area is affected by rain, with direct damage to the fruit and the development of fruit disease before harvest. The main objective of the study was to determine whether plants growing under tunnels had less rain damage, a lower incidence of disease, and higher yields than plants growing outdoors. Plants growing under the tunnels or outdoors had at best only small differences in leaf, crown, root, and flower and immature fruit dry weight. These responses were associated with relatively similar temperatures and relative humidities in the two growing environments. Marketable yields were 38% higher under the tunnels compared with yields outdoors in year 1, and 24% higher in year 2, mainly due to less rain damage. There were only small differences in the incidences of grey mold (Botrytis cinerea) and small and misshaped fruit in the plants growing under the tunnels and outdoors. There were also only small differences in postharvest quality, total soluble solids, and titratable acidity between the two environments. These results highlight the potential of plastic high tunnels for strawberry plants growing in subtropical areas that receive significant rainfall during the production season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted over 5 years to understand the seasonal phenology of bare-rooted ?Festival? strawberry plants (Fragaria ?ananassa) growing at Nambour in southeastern Queensland, Australia. Yields ranged from 661 to 966 g/plant, and average seasonal fruit fresh weight ranged from 15 to 18 g. The growth of the leaves, crowns, roots, flowers and fruit over time followed a linear or sigmoid pattern. Maximum values of leaf, crown and root dry weight towards the end of the growing season about 190 days after planting were 30, 15 and 7 g/plant, respectively. The rates of leaf and crown growth were lower than those achieved in California under a Mediterranean climate. There were strong relationships between the allocation of dry matter to the leaves, crowns and roots and plant dry weight. Allocation to the leaves, and especially to the crowns and roots, declined as the plants grew. The number of fruit/plant increased initially over time with a decline later in the season. Average fruit fresh weight was generally higher early in the season and then declined as fruit production increased. There were strong relationships between the growth of the whole plant and the growth of the flowers and immature fruit, and leaf expansion, across the growing season and across the 5 different years. These results indicate that seasonal growth and potential productivity were strongly linked to the expansion of the leaves in this environment.