111 resultados para GENETIC
Resumo:
This project developed a novel approach to integrating enhanced gene mapping technologies with crop modelling to enhance the rate of improvement in sorghum yield.
Resumo:
This project provided information on the genetics of crown rot (CR) resistance to help breeding work, located new parent lines in wheat and barley, and provided an insight into yield losses that occur in commercial varieties with increasing levels of CR for risk management. Genetic experiments found some highly resistant lines were poor parents, and CR resistance was complex. Best parent lines and many specific crosses were identified for further work. New potential parent lines were identified in wheat and barley, some now used in breeding programs. Yield loss can be severe even with low levels of CR when combined with drought stress. CR can reduce yield even with a wet finish.
Resumo:
In Queensland, Australia, strawberries (Fragaria xananassa Duchesne) are grown in open fields and rainfall events can damage fruit. Cultivars that are resistant to rain damage may reduce losses and lower risk for the growers. However, little is known about the genetic control of resistance and in a subtropical climate, unpredictable rainfall events hamper evaluation. Rain damage was evaluated on seedling and clonal trials of one breeding population comprising 645 seedling genotypes and 94 clones and on a second clonal population comprising 46 clones from an earlier crossing to make preliminary estimates of heritability. The incidence of field damage from rainfall and damage after laboratory soaking was evaluated to determine if this soaking method could be used to evaluate resistance to rain damage. Narrow-sense heritability of resistance to rain damage calculated for seedlings was low (0.21 +/- 0.15) and not significantly different from zero; however, broad-sense heritability estimates were moderate in both seedlings (0.49 +/- 0.16) and clones (0.45 +/- 0.08) from the first population and similar in clones (0.56 +/- 0.21) from the second population. Immersion of fruit in deionized water produced symptoms consistent with rain damage in the field. Lengthening the duration of soaking of 'Festival' fruit in deionized water exponentially increased the proportion of damage to fruit ranging in ripeness from immature to ripe during the first 6-h period of soaking. When eight genotypes were evaluated, the proportion of sound fruit after soaking in deionized water in the laboratory for up to 5 h was linearly related (r(2) = 0.90) to the proportion of sound fruit in the field after 89 mm of rain. The proportion of sound fruit of the breeding genotype '2008-208' and 'Festival' under soaking (0.67, 0.60) and field (0.52, 0.43) evaluations, respectively, is about the same and these genotypes may be useful sources of resistance to rain damage.
Resumo:
World consumption of fresh pineapple has quadrupled in less than 15 years (Loeillet and Pacqui, 2009). This phenomenal event started around 1996 when the first dedicated fresh market pineapple, '73-114', was released by Del Monte Inc. This was the culmination of somewhere in the vicinity of 34 years of breeding and selection and comprised 24 individual parent combinations (Anon., PRI breeding records). This demonstrates the difficulty of breeding new pineapple cultivars but also the value of a successful program. The success of '73-114' and the competitive nature of world pineapple markets have provided impetus for pineapple breeding programs. However, the highly heterozygous nature and self-incompatibility of pineapple limit breeding strategy options. This review looks at the collective experience in pineapple genetic improvement both conventional and using biotechnology tools, with an emphasis on fresh market pineapple. It focus on relevant pineapple reproductive biology, breeding strategies, parent cultivars and the relevance of biotechnology.
Resumo:
This project has contributed to the ecologically sustainable management of mangrove jack in Australia by providing comprehensive information on its biology, habitat requirements, population parameters and stock structure. Specifically, the project has resulted in an enhanced understanding of the life history of Australian mangrove jack, the levels of exploitation in its local fishery and the likely existence of a single genetic stock throughout Queensland.
Resumo:
Khaya senegalensis (African mahogany or dry-zone mahogany) is a high-value hardwood timber species with great potential for forest plantations in northern Australia. The species is distributed across the sub-Saharan belt from Senegal to Sudan and Uganda. Because of heavy exploitation and constraints on natural regeneration and sustainable planting, it is now classified as a vulnerable species. Here, we describe the development of microsatellite markers for K. senegalensis using next-generation sequencing to assess its intra-specific diversity across its natural range, which is a key for successful breeding programs and effective conservation management of the species. Next-generation sequencing yielded 93943 sequences with an average read length of 234bp. The assembled sequences contained 1030 simple sequence repeats, with primers designed for 522 microsatellite loci. Twenty-one microsatellite loci were tested with 11 showing reliable amplification and polymorphism in K. senegalensis. The 11 novel microsatellites, together with one previously published, were used to assess 73 accessions belonging to the Australian K. senegalensis domestication program, sampled from across the natural range of the species. STRUCTURE analysis shows two major clusters, one comprising mainly accessions from west Africa (Senegal to Benin) and the second based in the far eastern limits of the range in Sudan and Uganda. Higher levels of genetic diversity were found in material from western Africa. This suggests that new seed collections from this region may yield more diverse genotypes than those originating from Sudan and Uganda in eastern Africa.
Resumo:
Because of epidemics of Fusarium head blight (FHB; caused by Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schwein.) Petch]) in the northern Great Plains of the United States and Canada in the past two decades, malting barley breeders have been forced to use nonadapted barley (Hordeum vulgare L.) accessions as sources of FHB resistance. Many of the resistant accessions are from East Asia, and limited information is available on their genetic diversity and malt quality. The objectives of this study were to determine the genetic diversity among 30 East Asian accessions and two North American cultivars. Genetic diversity was based on 49 simple-sequence repeat markers. All accessions were tested for barley grain brightness; protein content; 1,000-kernel weight; malting loss; fine-grind malt extract; content of plump kernels, free amino nitrogen, soluble protein, and wort beta-glucan; the Kolbach index (i.e., the ratio of malt soluble protein to malt total protein); a-amylase activity; diastatic power; won color; and wort viscosity. A few accessions had equal quality compared with Harrington and Conlon barley for individual traits but not for all. Qing 2, Mokkei 93-78, and Nitakia 48 could be excellent sources for increased malt extract; Nitakia 48 is a possible source for low wort viscosity; and Mokkei 93-78 and Nitakia 48 are putative sources of low beta-glucan content. The cluster analyses also implied that the malt quality of an accession cannot be predicted based on the country where it was developed.
Resumo:
The objectives of this study were to quantify the components of genetic variance and the genetic effects, and to examine the genetic relationship of inbred lines extracted from various shrunken2(sh2) breeding populations. Ten diverse inbred lines developed from genetic background, were crossed in half diallel. Parents and their F1 hybrids were evaluated at three environments. The parents were genotyped using 20 polymorphic simple sequence repeats (SSR). Agronomic and quality traits were analysed by a mixed linear model according to additive-dominance genetic model. Genetic effects were estimated using an adjusted unbiased prediction method. Additive variance was more important than dominance variance in the expression of traits related to ear aspects (husk ratio and percentage of ear filled) and eating quality (flavour and total soluble solids). For agronomic traits, however, dominance variance was more important than additive variance. The additive genetic correlation between flavour and tenderness was strong (r = 0.84, P <0.01). Flavour, tenderness and kernel colour additive genetic effects were not correlated with yield related traits. Genetic distance (GD), estimated from SSR profiles on the basis of Jaccard's similarity coefficient varied from 0.10 to 0.77 with an average of 0.56. Cluster analysis classified parents according to their pedigree relationships. In most studied traits, F1 performance was not associated with GD.
Resumo:
A total of 4063 young bulls of two tropical genotypes (1639 Brahman and 2424 Tropical Composite) raised in northern Australia were evaluated for a comprehensive range of production and reproduction traits up to 24 months of age. Prior to weaning, peripheral blood concentrations of luteinising hormone (LH) and inhibin were measured at 4 months of age. At weaning (6 months) blood insulin-like growth factor-1 (IGF-I) and flight time were recorded. Body composition traits of fat depth and eye-muscle area were determined by ultrasonography at 15 months of age when additional measurements of liveweight, hip height and body condition score were recorded. Bull breeding soundness was evaluated at similar to 12, 18 and 24 months of age when measurements of scrotal circumference, sheath score, semen mass activity, progressive motility of individual sperm and percent morphologically normal sperm were recorded. Magnitude of heritability and genetic correlations changed across time for some traits. Heritability of LH, inhibin, IGF-I and of 18-month scrotal circumference, mass activity, progressive motility and percent normal sperm was 0.31, 0.74, 0.44, 0.75, 0.24, 0.15 and 0.25, respectively, for Brahmans and 0.48, 0.72, 0.36, 0.43, 0.13, 0.15 and 0.20, respectively, for Tropical Composites. Inhibin and IGF-I had moderate genetic association with percent normal sperm at 24 months in Brahmans but low to negligible associations in Tropical Composites. Body condition score in Brahmans and sperm motility (mass and individual) traits in both genotypes had moderate to strong genetic correlation with percent normal sperm and may prove useful candidates for indirect selection. There is scope to increase scrotal circumference by selection and this will be associated with favourable correlated responses of improved semen quality in both genotypes. The lack of genetic antagonism among bull traits indicates that selection for improved semen quality will not adversely affect other production traits.
Resumo:
There are two key types of selection in a plant breeding program, namely selection of hybrids for potential commercial use and the selection of parents for use in future breeding. Oakey et al. (in Theoretical and Applied Genetics 113, 809-819, 2006) showed how both of these aims could be achieved using pedigree information in a mixed model analysis in order to partition genetic effects into additive and non-additive effects. Their approach was developed for field trial data subject to spatial variation. In this paper we extend the approach for data from trials subject to interplot competition. We show how the approach may be used to obtain predictions of pure stand additive and non-additive effects. We develop the methodology in the context of a single field trial using an example from an Australian sorghum breeding program.
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21 degrees C (optimum temperature, OT) and 38 : 21 degrees C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17-63%) and seed-set percentage (7-65%). The two traits were strongly and positively associated (R-2 = 0.93, n = 36, P < 0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.
The use of genetic correlations to evaluate associations between SNP markers and quantitative traits
Resumo:
Open-pollinated progeny of Corymbia citriodora established in replicated field trials were assessed for stem diameter, wood density, and pulp yield prior to genotyping single nucleotide polymorphisms (SNP) and testing the significance of associations between markers and assessment traits. Multiple individuals within each family were genotyped and phenotyped, which facilitated a comparison of standard association testing methods and an alternative method developed to relate markers to additive genetic effects. Narrow-sense heritability estimates indicated there was significant additive genetic variance within this population for assessment traits ( h ˆ 2 =0.28to0.44 ) and genetic correlations between the three traits were negligible to moderate (r G = 0.08 to 0.50). The significance of association tests (p values) were compared for four different analyses based on two different approaches: (1) two software packages were used to fit standard univariate mixed models that include SNP-fixed effects, (2) bivariate and multivariate mixed models including each SNP as an additional selection trait were used. Within either the univariate or multivariate approach, correlations between the tests of significance approached +1; however, correspondence between the two approaches was less strong, although between-approach correlations remained significantly positive. Similar SNP markers would be selected using multivariate analyses and standard marker-trait association methods, where the former facilitates integration into the existing genetic analysis systems of applied breeding programs and may be used with either single markers or indices of markers created with genomic selection processes.
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.