67 resultados para Fishing Industry
Resumo:
Deriving an estimate of optimal fishing effort or even an approximate estimate is very valuable for managing fisheries with multiple target species. The most challenging task associated with this is allocating effort to individual species when only the total effort is recorded. Spatial information on the distribution of each species within a fishery can be used to justify the allocations, but often such information is not available. To determine the long-term overall effort required to achieve maximum sustainable yield (MSY) and maximum economic yield (MEY), we consider three methods for allocating effort: (i) optimal allocation, which optimally allocates effort among target species; (ii) fixed proportions, which chooses proportions based on past catch data; and (iii) economic allocation, which splits effort based on the expected catch value of each species. Determining the overall fishing effort required to achieve these management objectives is a maximizing problem subject to constraints due to economic and social considerations. We illustrated the approaches using a case study of the Moreton Bay Prawn Trawl Fishery in Queensland (Australia). The results were consistent across the three methods. Importantly, our analysis demonstrated the optimal total effort was very sensitive to daily fishing costs—the effort ranged from 9500–11 500 to 6000–7000, 4000 and 2500 boat-days, using daily cost estimates of $0, $500, $750, and $950, respectively. The zero daily cost corresponds to the MSY, while a daily cost of $750 most closely represents the actual present fishing cost. Given the recent debate on which costs should be factored into the analyses for deriving MEY, our findings highlight the importance of including an appropriate cost function for practical management advice. The approaches developed here could be applied to other multispecies fisheries where only aggregated fishing effort data are recorded, as the literature on this type of modelling is sparse.
Resumo:
Predicting who may leave a fishery is an important consideration when designing capacity reduction programs to enhance both ecological and economic sustainability. In this paper, the relationship between satisfaction and the desire to exit a fishery is examined for the Queensland East Coast Trawl fishery. Income from fishing, and changes in income over the last 5 years, were key factors affecting overall satisfaction. Relative income per se was not a significant factor, counter to most satisfaction studies. Continuing a family tradition of fishing and, for one group, pride in being a fisher was found to be significant. Satisfaction with fishing overall and the challenge of fishing were found to be the primary drivers of the desire to stay or leave the fishery. Surprisingly, public perceptions of fishing, trust in management and perceptions of equity in resource allocation did not significantly affect overall satisfaction or the desire to exit the fishery.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.
Resumo:
Exotic plant pests (EPPs) threaten production, market access and sustainability of Australian plant production systems. For the grains industry there are over 600 identified EPPs of which 54 are considered high priority, posing a significant threat. Despite Australia’s geographical isolation and strong quarantine systems, the threat from EPPs has never been higher with the increasing levels of travel and trade, emphasising the need for improving our efforts in prevention, preparedness and surveillance for EPPs.
Resumo:
This project has for the first time demonstrated the feasibility of hatchery production of jungle perch fingerlings. The research on jungle perch production has enabled a hatchery production manual with accompanying videos to be produced. This has given private commercial hatcheries the information needed to produce jungle perch fingerlings. Several hatcheries have already indicated an interest in producing jungle perch and will be assisted to do so in 2016. Currently jungle perch are not a permitted stocking species, so cannot be sold to fish stocking groups. However, hatcheries will be able to sell fingerlings to the aquarium trade or supply grow out facilities that could produce jungle perch for human consumption. Should jungle perch become a permitted species for stocking, this will provide hatcheries with a major new product option to sell to fish stocking groups. It would also benefit anglers by providing another iconic species for impoundment stocking programs. This could have flow-on benefits to regional economies through angler tourism. Should the pilot reintroductions of jungle perch into streams result in self-sustaining jungle perch populations, then there will be three restored jungle perch populations close to major population centres. This will create a new opportunity for anglers not normally able to target jungle perch. Since the majority of anglers who target jungle perch are catch and release fishers, angling is expected to have minimal impact on recovery of the populations. This project led to the development of a hatchery manual for jungle perch production and to a summary brochure. In late 2014 and in 2015 researchers were able to make the first ever releases of jungle perch fingerlings back into rivers and streams within their historical range.