140 resultados para Downy Mildew Resistance
Resumo:
The threat and management of glyphosate# resistant weeds are major issues facing northern region growers. At present five weeds are confirmed glyphosate-resistant: barnyard grass, liverseed grass, windmill grass, annual ryegrass and flaxleaf fleabane. This project used 25 experiments to investigate the ecology of the grass weeds, plus new or improved chemical and non-chemical control tactics for them. The refined glyphosate resistance model developed in this project used the experiments' findings to predict the long-term impacts on evolution of resistance and on seed bank numbers of resistant weeds. These data led to revised management and resistance avoidance strategies, which were published in the Reporter newsletter, and via an on-line risk assessment tool. - See more at: http://finalreports.grdc.com.au/UQ00054#sthash.oTkCN4Sk.dpuf
Resumo:
This is a sub-project of the Australian Wheat and Barley Molecular Marker Program funded by GRDC and led by Drs Diane Mather and Ken Chalmers of University of Adelaide. In this sub-project we will supply phenotypic data on resistance to two species of root-lesion nematodes (Pratylenchus thornei and P. neglectus) on several populations of wheat doubled haploids. We will also supply existing genotypic data on one doubled haploid population. We will also test one population of doubled haploids (CPI133872/Janz) a second time for resistance to P. thornei and P. neglectus and supply this information to University of Adelaide for the development of molecular markers for use by wheat breeders in selecting for resistance to root-lesion nematodes.
Resumo:
This project provided information on the genetics of crown rot (CR) resistance to help breeding work, located new parent lines in wheat and barley, and provided an insight into yield losses that occur in commercial varieties with increasing levels of CR for risk management. Genetic experiments found some highly resistant lines were poor parents, and CR resistance was complex. Best parent lines and many specific crosses were identified for further work. New potential parent lines were identified in wheat and barley, some now used in breeding programs. Yield loss can be severe even with low levels of CR when combined with drought stress. CR can reduce yield even with a wet finish.
Resumo:
Development of molecular markers for rapid diagnosis of phosphine resistance in insects.
Resumo:
Four field trials were conducted with wood modified with dimethyloldihydroxy-ethyleneurea (DMDHEU) in contact with subterranean termites. Trials 1 to 3 were conducted with Coptotermes acinaciformis (Froggatt); 1 and 2 in south-east Queensland, and 3 in northern Queensland, Australia. Trial 4 was conducted in northern Queensland with Mastotermes darwiniensis (Froggatt). Four timber species (Scots pine, beech, Slash pine and Spotted gum) and two levels (1.3 M and 2.3 M) of DMDHEU were used. The tests were validated. DMDHEU successfully prevented damage by C. acinaciformis in south-east Queensland, but not in northern Queensland. It also did not protect the wood against M. darwiniensis. Except for beech in trial 4, DMDHEU led to reduced mass losses caused by termite attack compared to the unmodified feeder stakes. Slash pine (in trials 1 and 3) and Spotted gum (in trial 1) presented low mass losses. Modification of Scots pine was more effective against termite damage than the modification of beech.
Resumo:
Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R (2) sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.
Resumo:
Australian and international chickpea (Cicer arietinum) cultivars and germplasm accessions, and wild annual Cicer spp. in the primary and secondary gene pools, were assessed in glasshouse experiments for levels of resistance to the root-lesion nematodes Pratylenchus thornei and P. neglectus. Lines were grown in replicated experiments in pasteurised soil inoculated with a pure culture of either P. thornei or P. neglectus and the population density of the nematodes in the soil plus roots after 16 weeks growth was used as a measure of resistance. Combined statistical analyses of experiments (nine for P. thornei and four for P. neglectus) were conducted and genotypes were assessed using best linear unbiased predictions. Australian and international chickpea cultivars possessed a similar range of susceptibilities through to partial resistance. Wild relatives from both the primary (C. reticulatum and C. echinospermum) and secondary (C. bijugum) gene pools of chickpea were generally more resistant than commercial chickpea cultivars to either P. thornei or P. neglectus or both. Wild relatives of chickpea have probably evolved to have resistance to endemic root-lesion nematodes whereas modern chickpea cultivars constitute a narrower gene pool with respect to nematode resistance. Resistant accessions of C. reticulatum and C. echinospermum were crossed and topcrossed with desi chickpea cultivars and resistant F(4) lines were obtained. Development of commercial cultivars with the high levels of resistance to P. thornei and P. neglectus in these hybrids will be most valuable for areas of the Australian grain region and other parts of the world where alternating chickpea and wheat crops are the preferred rotation.
Resumo:
Post head-emergence frost causes substantial losses for Australian barley producers. Varieties with improved resistance would have a significant positive impact on Australian cropping enterprises. Five barley genotypes previously tested for reproductive frost resistance in southern Australia were tested, post head-emergence, in the northern grain region of Australia and compared with the typical northern control cultivars, Gilbert and Kaputar. All tested genotypes suffered severe damage to whole heads and stems at plant minimum temperatures less than -8degreesC. In 2003, 2004 and 2005, frost events reaching a plant minimum temperature of ~-6.5degreesC did not result in the complete loss of grain yield. Rather, partial seed set was observed. The control genotype, Gilbert, exhibited seed set that was greater than or equal to that of any genotype in each year, as did Kaputar when tested in 2005. Thus, Gilbert and Kaputar were at least as resistant as any tested genotype. This contrasts with trial results from the southern grain region where Gilbert was reported to be less resistant than Franklin, Amagi Nijo and Haruna Nijo. Hence, rankings for post head-emergence frost damage in the northern grain region differ from those previously reported. These results indicate that Franklin, Amagi Nijo and Haruna Nijo are not likely to provide useful sources of frost resistance or markers to develop improved varieties for the northern grain region of Australia.
Resumo:
The responses of 95 barley lines and cultivars to spot form of net blotch (SFNB) caused by Pyrenophora teres f. maculata were analyzed as seedlings and adults in Australia and Canada. Cluster analyses revealed complex reaction responses. Only 2 lines (Esperance Orge 289 and TR3189) were resistant to all isolates at the seedling stage, whereas 15 lines and cultivars (81-82/033, Arimont, BYDV-018, CBSS97M00855T-B2-M1-Y1-M2-Y-1M-0Y, C19776, Keel, Sloop, Torrens, TR326, VB0111, Yarra, VB0229, WI-2477, WI2553, and Wisconsin Pedigree) were resistant toward the two Canadian isolates and mixture of Australian isolates at the adult stages. In Australian field experiments, the effectiveness of SFNB resistance in three barley cultivars (Barque. Cowabbie, and Schooner) and one breeding line (VB9104) with a different source of resistance was tested. Barque, which possessed a resistance gene that provided complete resistance to SFNB, was the most effective and showed no effect on grain yield or quality in the presence of inoculum. Generally, cultivars with seedling or adult resistance had less disease and better grain quality than the susceptible control. Dash, but they were not as effective as Barque. A preliminary differential set of 19 barley lines and cultivars for P teres I. maculata is proposed.
Resumo:
Rabbit haemorrhagic disease is a major tool for the management of introduced, wild rabbits in Australia. However, new evidence suggests that rabbits may be developing resistance to the disease. Rabbits sourced from wild populations in central and southeastern Australia, and domestic rabbits for comparison, were experimentally challenged with a low 60 ID50 oral dose of commercially available Czech CAPM 351 virus - the original strain released in Australia. Levels of resistance to infection were generally higher than for unselected domestic rabbits and also differed (0-73% infection rates) between wild populations. Resistance was lower in populations from cooler, wetter regions and also low in arid regions with the highest resistance seen within zones of moderate rainfall. These findings suggest the external influences of non-pathogenic calicivirus in cooler, wetter areas and poor recruitment in arid populations may influence the development rate of resistance in Australia.
Resumo:
A powdery mildew with a Pseudoidium anamorph was found on Glycine max in south-east Queensland, Australia. Morphological examination and molecular identification determined this species as Erysiphe diffusa, which is reported for the first time from Australia. © 2012 Australasian Plant Pathology Society Inc.
Resumo:
Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.
Resumo:
A survey of the Australian barley powdery mildew (Blumeria graminis f. sp. hordei) population was conducted in 2010 and 2011. Three hundred and sixty-two isolates of the pathogen were collected from 18 locations across all six states of Australia. Thirty-two barley differentials were used and 11 genotypes were able to differentiate the population with virulence frequencies varying from 14.5 % to 96.6 %. Twenty-seven pathotypes were detected. Fifteen of them were found in both years and they represented 92.0 % of all isolates examined. No virulence was found on a further 16 major genes for resistance (Mla1, Mla3, Mla6, Mla7, Mla9, Mla10, Mla12, Mla13, Mla23, MlaN81, Mlh, MlLa, Mlp1, Ml(IM9), Ml(St) and mlo) indicating a relatively simple population and the ready availability of diverse sources of resistance. This paper reports the powdery mildew virulences present in Australia, provides intelligence for future resistance breeding and sets a basis for further virulence studies.
Resumo:
BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions. © 2013 Society of Chemical Industry © 2013 Society of Chemical Industry 69 6 June 2013 10.1002/ps.3514 Rapid Report Rapid Report © 2013 Society of Chemical Industry.
Resumo:
Fumigation of stored grain with phosphine (PH 3) is used widely to control the lesser grain borer Rhyzopertha dominica. However, development of high level resistance to phosphine in this species threatens control. Effective resistance management relies on knowledge of the expression of resistance in relation to dosage at all life stages. Therefore, we determined the mode of inheritance of phosphine resistance and strength of the resistance phenotype at each developmental stage. We achieved this by comparing mortality and developmental delay between a strongly resistant strain (R-strain), a susceptible strain (S-strain) and their F 1 progenies. Resistance was a maternally inherited, semi-dominant trait in the egg stage but was inherited as an autosomal, incompletely recessive trait in larvae and pupae. The rank order of developmental tolerance in both the sensitive and resistant strains was eggs > pupae > larvae. Comparison of published values for the response of adult R. dominica relative to our results from immature stages reveals that the adult stage of the S-strain is more sensitive to phosphine than are larvae. This situation is reversed in the R-strain as the adult stage is much more resistant to phosphine than even the most tolerant immature stage. Phosphine resistance factors at LC 50 were eggs 400×, larvae 87× and pupae 181× with respect to reference susceptible strain (S-strain) adults indicating that tolerance conferred by a particular immature stage neither strongly nor reliably interacts with the genetic resistance element. Developmental delay relative to unfumigated control insects was observed in 93% of resistant pupae, 86% of resistant larvae and 41% of resistant eggs. Increased delay in development and the toxicity response to phosphine exposure were both incompletely recessive. We show that resistance to phosphine has pleiotropic effects and that the expression of these effects varies with genotype and throughout the life history of the insect. © 2012.