165 resultados para Contour farming.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In semi-arid sub-tropical areas, a number of studies concerning no-till (NT) farming systems have demonstrated advantages in economic, environmental and soil quality aspects over conventional tillage (CT). However, adoption of continuous NT has contributed to the build-up of herbicide resistant weed populations, increased incidence of soil- and stubble-borne diseases, and stratification of nutrients and organic carbon near the soil surface. Some farmers often resort to an occasional strategic tillage (ST) to manage these problems of NT systems. However, farmers who practice strict NT systems are concerned that even one-time tillage may undo positive soil condition benefits of NT farming systems. We reviewed the pros and cons of the use of occasional ST in NT farming systems. Impacts of occasional ST on agronomy, soil and environment are site-specific and depend on many interacting soil, climatic and management conditions. Most studies conducted in North America and Europe suggest that introducing occasional ST in continuous NT farming systems could improve productivity and profitability in the short term; however in the long-term, the impact is negligible or may be negative. The short term impacts immediately following occasional ST on soil and environment include reduced protective cover, soil loss by erosion, increased runoff, loss of C and water, and reduced microbial activity with little or no detrimental impact in the long-term. A potential negative effect immediately following ST would be reduced plant available water which may result in unreliability of crop sowing in variable seasons. The occurrence of rainfall between the ST and sowing or immediately after the sowing is necessary to replenish soil water lost from the seed zone. Timing of ST is likely to be critical and must be balanced with optimising soil water prior to seeding. The impact of occasional ST varies with the tillage implement used; for example, inversion tillage using mouldboard tillage results in greater impacts as compared to chisel or disc. Opportunities for future research on occasional ST with the most commonly used implements such as tine and/or disc in Australia’s northern grains-growing region are presented in the context of agronomy, soil and the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of no-tillage (NT) farming has revolutionized agricultural systems by allowing growers to manage greater areas of land with reduced energy, labour and machinery inputs to control erosion, improve soil health and reduce greenhouse gas emission. However, NT farming systems have resulted in a build-up of herbicide-resistant weeds, an increased incidence of soil- and stubble-borne diseases and enrichment of nutrients and carbon near the soil surface. Consequently, there is an increased interest in the use of an occasional tillage (termed strategic tillage, ST) to address such emerging constraints in otherwise-NT farming systems. Decisions around ST uses will depend upon the specific issues present on the individual field or farm, and profitability and effectiveness of available options for management. This paper explores some of the issues with the implementation of ST in NT farming systems. The impact of contrasting soil properties, the timing of the tillage and the prevailing climate exert a strong influence on the success of ST. Decisions around timing of tillage are very complex and depend on the interactions between soil water content and the purpose for which the ST is intended. The soil needs to be at the right water content before executing any tillage, while the objective of the ST will influence the frequency and type of tillage implement used. The use of ST in long-term NT systems will depend on factors associated with system costs and profitability, soil health and environmental impacts. For many farmers maintaining farm profitability is a priority, so economic considerations are likely to be a primary factor dictating adoption. However, impacts on soil health and environment, especially the risk of erosion and the loss of soil carbon, will also influence a grower’s choice to adopt ST, as will the impact on soil moisture reserves in rainfed cropping systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive pig and poultry farming in Australia can be a source of pathogens with implications for food-safety and/or human illness. Seven studies were undertaken with the following objectives: · Assess the types of zoonotic pathogens in waste · Assess the transfer of pathogens during re-use both within the shed and externally in the environment · The potential for movement of pathogens via aerosols In the first and second studies the extent of zoonotic pathogens was evaluated in both piggery effluent and chicken litter and Salmonella and Campylobacter were detected in both wastes. In the third study the dynamics of Salmonella during litter re-use was examined and results showed a trend for lower Salmonella levels and serovar diversity in re-used litter compared to new litter. Thus, re-use within the poultry farming system posed no increased risk. The fourth study addressed the direct risks of pathogens to farm workers due to reuse of piggery effluent within the pig shed. Based on air-borne Escherichia coli (E. coli) levels, re-using effluent did not pose a risk. In the fifth study high levels of Arcobacter spp. were detected in effluent ponds and freshly irrigated soils with potential food-safety risks during the irrigation of food-crops and pasture. The sixth and seventh studies addressed the risks from aerosols from mechanically ventilated sheds. Staphylococci were shown to have potential as markers, with airborne levels gradually dropping and reaching background levels at 400 m distance. Salmonella was detected (at low levels) both inside and outside the shed (at 10 m). Campylobacter was detected only once inside the shed during the 3-year period (at low levels). Results showed there was minimal risk to humans living adjacent to poultry farms This is the first comprehensive analysis studying key food-safety pathogens and potential public health risks associated with intensively farmed pigs and poultry in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limitations in quality bedding material have resulted in the growing need to re-use litter during broiler farming in some countries, which can be of concern from a food-safety perspective. The aim of this study was to compare the Campylobacter levels in ceca and litter across three litter treatments under commercial farming conditions. The litter treatments were (a) the use of new litter after each farming cycle; (b) an Australian partial litter re-use practice; and (c) a full litter re-use practice. The study was carried out on two farms over two years (Farm 1, from 2009–2010 and Farm 2, from 2010–2011), across three sheds (35,000 to 40,000 chickens/shed) on each farm, adopting three different litter treatments across six commercial cycles. A random sampling design was adopted to test litter and ceca for Campylobacter and Escherichia coli, prior to commercial first thin-out and final pick-up. Campylobacter levels varied little across litter practices and farming cycles on each farm and were in the range of log 8.0–9.0 CFU/g in ceca and log 4.0–6.0 MPN/g for litter. Similarly the E. coli in ceca were ∼log 7.0 CFU/g. At first thin-out and final pick-up, the statistical analysis for both litter and ceca showed that the three-way interaction (treatments by farms by times) was highly significant (P < 0.01), indicating that the patterns of Campylobacter emergence/presence across time vary between the farms, cycles and pickups. The emergence and levels of both organisms were not influenced by litter treatments across the six farming cycles on both farms. Either C. jejuni or C. coli could be the dominant species across litter and ceca, and this phenomenon could not be attributed to specific litter treatments. Irrespective of the litter treatments in place, cycle 2 on Farm 2 remained campylobacter-free. These outcomes suggest that litter treatments did not directly influence the time of emergence and levels of Campylobacter and E. coli during commercial farming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CQ Cotton Regional Extension project has been a key to the delivery of emerging, cutting edge research information and knowledge to the Central Queensland cotton industry. The direct relevance of southern research to cotton production under the conditions experienced in CQ always has been an issue which could be addressed through regional assessment and adaptation. The project links the national research to the region through development and extension, with a strong focus on the major industry production issues including but not limited to disease, Integrated Pest Management (IPM), soils, nutrition and integrated weed management. Susan Mass has supported the implementation of national industry-wide programs particularly the industry Best Management Practices program (myBMP). This project has successfully transitioned to a focus on delivering national outcomes in target lead areas as part of National Development and Delivery Team established by Cotton CRC, CRDC and Cotton Australia, while maintaining a regional extension presence for Central Queensland cotton & grain farming systems. Susan Mass has very effectively merged and integrated strong regional extension support to cotton growers in Central Queensland with delivery of industry extension priorities across the entire industry in the Development and Delivery Team model. Susan is the target lead for disease and farm hygiene. Recognising the challenges of having regionally relevant research in Central Queensland, this project has facilitated locally based research including boll rot, Bt cotton resistance management, and mealybug biology through strong collaborations. This collaborative approach has included linkage to Department of Environment and Resource Managmeent (DERM) groups and myBMP programs resulting in a high uptake in CQ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of no-tillage (NT) farming has revolutionized agricultural systems by allowing growers to manage greater areas of land with reduced energy, labour and machinery inputs to control erosion, improve soil health and reduce greenhouse gas emission. However, NT farming systems have resulted in a build-up of herbicide-resistant weeds, an increased incidence of soil- and stubble-borne diseases and enrichment of nutrients and carbon near the soil surface. Consequently, there is an increased interest in the use of an occasional tillage (termed strategic tillage, ST) to address such emerging constraints in otherwise-NT farming systems. Decisions around ST uses will depend upon the specific issues present on the individual field or farm, and profitability and effectiveness of available options for management. This paper explores some of the issues with the implementation of ST in NT farming systems. The impact of contrasting soil properties, the timing of the tillage and the prevailing climate exert a strong influence on the success of ST. Decisions around timing of tillage are very complex and depend on the interactions between soil water content and the purpose for which the ST is intended. The soil needs to be at the right water content before executing any tillage, while the objective of the ST will influence the frequency and type of tillage implement used. The use of ST in long-term NT systems will depend on factors associated with system costs and profitability, soil health and environmental impacts. For many farmers maintaining farm profitability is a priority, so economic considerations are likely to be a primary factor dictating adoption. However, impacts on soil health and environment, especially the risk of erosion and the loss of soil carbon, will also influence a grower's choice to adopt ST, as will the impact on soil moisture reserves in rainfed cropping systems. © 2015 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleepy cod Oxyeleotris lineolatus is a species of freshwater goby in demand in Australian markets by consumers of Asian origin. It is related to marble goby Oxyeleotris marmoratus, the most expensive freshwater food fish in Asia, which is cultured throughout southeast Asia in ponds and cages. The performance of sleepy cod in culture conditions was investigated to assess the viability of farming them in northern Australia. Sleepy cod fingerlings (62.8 +/- 0.8 mm total length and 2.56 +/- 0.095 g) were stocked into experimental ponds at 32,857 fish/ha, and grown out for 8 mo. Shelter was provided in each of three replicate ponds and was absent in three control ponds. The provision of shelter in juvenile growout was found to be of no benefit, although fish in ponds provided with shelter weighed slightly more per unit length than fish in ponds without shelter. Cannibalism was not a problem in growout, and survival was close to 100%. After the shelter trial was completed, fish were graded into large and small classes (three replicates of each), and grown out without shelter at the same density for 158 d. Following that, fish were again graded, and the largest 30% retained from growout at a density of 8,857 fish/ha (large, 198 +/-6.44 g) or 10,000 fish/ha (small, 48.9 +/-1.27 g). These were grown out for 188 d. Growth of selected stock at low densities was slower than earlier growth rates, although smaller fish gained weight more rapidly than larger fish. Growth rates were better than the only published data for marble goby. Further investigation into high density culture and different genotypes of sleepy cod needs to be undertaken to determine the viability of pond culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizoctonia solani AG-2-2 was isolated from wilting and dying plants of sulla (Hedysarum coronarium), which is currently being assessed in eastern and southern Australia for its potential as a pasture and forage legume. Infected plants in the field had extensive rotting of the taproot, lateral roots and crown. Koch's postulates were fulfilled using three inoculation methods. The disease may pose a considerable threat to the potential use of H. coronarium in the dryland, grazing farming systems of Australia, with resistance offering the most viable option for minimising its impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports on the use of naturally occurring F-specific coliphages, as well as spiked MS-2 phage, to evaluate a land-based effluent treatment/reuse system and an effluent irrigation scheme. Both the natural phages and the spiked MS-2 phage indicated that the effluent treatment/reuse system (FILTER - Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) achieved a reduction in phage levels over the treatment system by one to two log10. FILTER reduced natural F-specific phage numbers from around 103 to below 102 100-ml-1 and the spiked phage from 105 to around 104 100-ml-1 (incoming compared with outgoing water). In the effluent irrigation scheme, phage spiked into the holding ponds dropped from 106 to 102 100-ml-1 after 168 h (with no detectable levels of natural F-specific phage being found prior to spiking). Only low levels of the spiked phage (102 gm-1) could be recovered from soil irrigated with phage-spiked effluent (at 106 phage 100 ml-1) or from fruits (around 102 phage per fruit) that had direct contact with soil which had been freshly irrigated with the same phage-spiked effluent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are renewed calls for end-user participation and the integration of local knowledge in agricultural research. In Australia, the response has included an increased emphasis on participatory on-farm research with farmers and commercial agronomists that tests accepted principals to answer practical local farming questions. However, this pursuit of greater relevance has often led to compromises in research designs, unclear results and frustration amongst farmers, commercial agronomists and Research Development and Extension (RDE) agency researchers. This paper reports on a series of pre-season planning workshops from `Doing successful on-farm research', a workshop-based initiative that provides guidelines and a series of interactive activities to plan better participatory on-farm research. The workshop approach helps people design on-farm research that is appropriate to their own needs and local conditions. It assists them to clearly identify their issues, develop specific research questions and decide the best approach to answer those questions with the appropriate rigour for their own situations. These `Doing successful on-farm research' workshops address four potential deficiencies in on-farm research and farming systems RDE more generally in Australia: (1) variable participation of scientists and farmers in on-farm research; (2) the lack of clear guidelines for effective participatory practice and on-farm research; (3) limited support for on-farm research beyond the intensive investigations conducted by RDE agencies and (4) limited support for industry and farmers to contextualise information and research outcomes for specific individual circumstances and faster adaptation of technology. This may be a valuable contribution to balancing the demands for both relevance and rigour in on-farm research in Australia. In "Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.