214 resultados para weed resistance
Resumo:
As failure to control Rhyzopertha dominica (F.) with phosphine is a common problem in the grain-growing regions of Brazil, a study was undertaken to investigate the frequency, distribution and strength of phosphine resistance in R. dominica in Brazil. Nineteen samples of R. dominica were collected between 1991 and 2003 from central storages where phosphine fumigation had failed to control this species. Insects were cultured without selection until testing in 2005. Each sample was tested for resistance to phosphine on the basis of the response of adults to discriminating concentrations of phosphine (20 and 48 h exposures) and full dose-response assays (48 h exposure). Responses of the Brazilian R. dominica samples were compared with reference susceptible, weak-resistance and strong-resistance strains from Australia in parallel assays. All Brazilian population samples showed resistance to phosphine: five were diagnosed with weak resistance and 14 with strong resistance. Five samples showed levels of resistance similar to the reference strong-resistance strain. A representative highly resistant sample was characterised by exposing mixed-age cultures to a range of constant concentrations of phosphine for various exposure periods. Time to population extinction (TPE) and time to 99.9% suppression of population (LT99.9) values of this sample were generally similar to those of the reference strong-resistance strain. For example, at 0.1, 0.5 and 1.0 mg L-1, LT99.9 values for BR33 and the reference strong-resistance strain were respectively 21, 6.4 and 3.7 days and 17, 6.2 and 3.8 days. With both strains, doubling phosphine concentrations to 2 mg L -1 resulted in increased LT99.9 and TPE. High level and frequency of resistance in all population samples, some of which had been cultured without selection for up to 12 years, suggest little or no fitness deficit associated with phosphine resistance. The present research indicates that widespread phosphine resistance may be developing in Brazil. Fumigation practices should be monitored and resistance management plans implemented to alleviate further resistance development.
Resumo:
Aconophora compressa (Hemiptera: Membracidae), a biological control agent introduced against the weed Lantana camara (Verbenaceae) in Australia, has since been observed on several non-target plant species, including native mangrove Avicennia marina (Acanthaceae). In this study we evaluated the suitability of two native mangroves, A. marina and Aegiceras corniculatum (Myrsinaceae), for the survival and development of A. compressa through no-choice field cage studies. The longevity of females was significantly higher on L. camara (57.7 ± 3.8 days) than on A. marina (43.3 ± 3.3 days) and A. corniculatum (45.7 ± 3.8 days). The proportion of females laying eggs was highest on L. camara (72%) followed by A. marina (36%) and A. corniculatum (17%). More egg batches per female were laid on L. camara than on A. marina and A. corniculatum. Though more nymphs per shoot emerged on L. camara (29.9 ± 2.8) than on A. marina (13 ± 4.8) and A. corniculatum (10 ± 5.3), the number of nymphs that developed through to adults was not significantly different. The duration of nymphal development was longer on A. marina (67 ± 5.8 days) than on L. camara (48 ± 4 days) and A. corniculatum (43 ± 4.6 days). The results, which are in contrast to those from previous glasshouse and quarantine trials, provide evidence that A. compressa adults can survive, lay eggs and complete nymphal development on the two non-target native mangroves in the field under no-choice condition.
Resumo:
Sw-5 is an important disease resistance gene of tomato, providing broad resistance to Tomato spotted wilt virus (TSWV). A cleaved amplified polymorphic sequence (CAPS) marker, closely linked to the gene, has been reported. Although the Sw-5 locus has been characterised, a gene-specific marker has not been developed. This paper presents a PCR-based marker-system that consists of the co-amplification of a dominant marker representing the Sw-5 gene sequence, and the modified CAPS marker as a positive control and indicator of genotype.
Resumo:
Weed management is one of the most important economic and agronomic issues facing farmers in Australia's grain regions. Weed species occurrence and abundance was monitored between 1997 and 2000 on 46 paddocks (sites) across 18 commercial farms located in the Northern Grain Region. The sites generally fell within 4 disjunct regions, from south to north: Liverpool Plains, Moree, Goondiwindi and Kingaroy. While high species richness was found (139 species or species groups), only 8 species occurred in all 4 regions and many (56 species) only occurred at 1 site or region. No species were observed at every site but 7 species (Sonchus spp., Avena spp., Conyza spp., Echinochloa spp., Convolvulus erubescens, Phalaris spp. and Lactuca serriola) were recorded on more than 70% of sites. The average number of species observed within crops after treatment and before harvest was less than 13. Species richness tended to be higher in winter pulse crops, cotton and in fallows, but overall was similar at the different sampling seasons (summer v. winter). Separate species assemblages associated with the Goondiwindi and Kingaroy regions were identified by correspondence analysis but these appeared to form no logical functional group. The species richness and density was generally low, demonstrating that farmers are managing weed populations effectively in both summer and winter cropping phases. Despite the apparent adoption of conservation tillage, an increase in opportunity cropping and the diversity of crops grown (13) there was no obvious effect of management practices on weed species richness or relative abundance. Avena spp. and Sonchus spp. were 2 of the most dominant weeds, particularly in central and southern latitudes of the region; Amaranthus spp. and Raphanus raphanistrum were the most abundant species in the northern part of the region. The ubiquity of these and other species shows that continued vigilance is required to suppress weeds as a management issue.
Resumo:
Pratylenchus thornei and P. neglectus are two species of root-lesion nematode that cause substantial yield losses in wheat. No commercially available wheat variety has resistance to both species. A doubled-haploid population developed from a cross between the synthetic hexaploid wheat line CPI133872 and the bread wheat Janz was used to locate and tag quantitative trait loci (QTLs) associated with resistance to both P. thornei and P. neglectus. Wheat plants were inoculated with both species of nematode in independent replicated glasshouse trials repeated over 2 years. Known locations of wheat microsatellite markers were used to construct a framework map. After an initial single-marker analysis to detect marker-trait linkages, chromosome regions associated with putative QTLs were targetted with microsatellite markers to increase map density in the chromosome regions of interest. In total, 148 wheat microsatellite markers and 21 amplified fragment length polymorphism markers were mapped. The codominant microsatellite marker Xbarc183 on the distal end of chromosome 6DS was allelic for resistance to both P. thornei and P. neglectus. The QTL were designated QRlnt.lrc-6D.1 and QRlnn.lrc-6D.1, for the 2 traits, respectively. The allele inherited from CPI133872 explained 22.0-24.2% of the phenotypic variation for P. thornei resistance, and the allele inherited from Janz accounted for 11.3-14.0% of the phenotypic variation for P. neglectus resistance. Composite interval mapping identified markers that flank a second major QTL on chromosome 6DL (QRlnt.lrc-6D.2) that explained 8.3-13.4% of the phenotypic variation for P. thornei resistance. An additional major QTL associated with P. neglectus resistance was detected on chromosome 4DS (QRlnn.lrc-4D.1) and explained a further 10.3-15.4% of the phenotypic variation. The identification and tagging of nematode resistance genes with molecular markers will allow appropriate allele combinations to be selected, which will aid the successful breeding of wheat with dual nematode resistance.
Resumo:
Black point in wheat has the potential to cost the Australian industry $A30.4 million a year. It is difficult and expensive to screen for resistance, so the aim of this study was to validate 3 previously identified quantitative trait loci (QTLs) for black point resistance on chromosomes 2B, 4A, and 3D of the wheat variety Sunco. Black point resistance data and simple sequence repeat (SSR) markers, linked to the resistance QTLs and suited to high-throughput assay, were analysed in the doubled haploid population, Batavia (susceptible) × Pelsart (resistant). Sunco and Pelsart both have Cook in their pedigree and both have the Triticum timopheevii translocation on 2B. SSR markers identified for the 3 genetic regions were gwm319 (2B, T. timopheevii translocation), wmc048 (4AS), and gwm341 (3DS). Gwm319 and wmc048 were associated with black point resistance in the validation population. Gwm341 may have an epistatic influence on the trait because when resistance alleles were present at both gwm319 and wmc048, the Batavia-derived allele at gwm341 was associated with a higher proportion of resistant lines. Data are presented showing the level of enrichment achieved for black point resistance, using 1, 2, or 3 of these molecular markers, and the number of associated discarded resistant lines. The level of population enrichment was found to be 1.83-fold with 6 of 17 resistant lines discarded when gwm319 and wmc048 were both used for selection. Interactions among the 3 QTLs appear complex and other genetic and epigenetic factors influence susceptibility to black point. Polymorphism was assessed for these markers within potential breeding material. This indicated that alternative markers to wmc048 may be required for some parental combinations. Based on these results, marker-assisted selection for the major black point resistance QTLs can increase the rate of genetic gain by improving the selection efficiency and may facilitate stacking of black point resistances from different sources.
Resumo:
Net form of net blotch (NFNB), caused by Pyrenophora teres Drechs. f. teres Smedeg., is a serious disease problem for the barley industry in Australia and other parts of the world. Three doubled haploid barley populations, Alexis/Sloop, WI2875-1/Alexis, and Arapiles/Franklin, were used to identify genes conferring adult plant resistance to NFNB in field trials. Quantitative trait loci (QTLs) identified were specific for adult plant resistance because seedlings of the parental lines were susceptible to the NFNB isolates used in this study. QTLs were identified on chromosomes 2H, 3H, 4H, and 7H in both the Alexis/Sloop and WI2875-1/Alexis populations and on chromosomes 1H, 2H, and 7H in the Arapiles/Franklin population. Using QTLNetwork, epistatic interactions were identified between loci on chromosomes 3H and 6H in the Alexis/Sloop population, between 2H and 4H in the WI2875-1/Alexis population, and between 5H and 7H in the Arapiles/Franklin population. Comparisons with earlier studies of NFNB resistance indicate the pathotype-dependent nature of many resistance QTLs and the importance of establishing an international system of pathotype nomenclature and differential testing.
Resumo:
Bellyache bush, Jatropha gossypiifolia L., is a serious weed of northern Australia. Agonosoma trilineatum (F.) is an insect from tropical America released in Australia in 2003 as a biological control agent against bellyache bush. It feeds on seeds and has the potential to reduce seed production, thereby potentially reducing the rate of spread and recruitment. To test the host specificity of A. trilineatum, four biological responses to host plant species were determined: development of nymphs, oviposition preferences, adult feeding and frequency of mating. Development of nymphs to adults and adult feeding only occurred on three Jatropha spp. These species also supported mating and oogenesis but only J. gossypiifolia was accepted for oviposition. Mating did not occur in the presence of other plant species. The evidence indicates that there is little risk associated with the release of this insect species in Australia and probably other countries where this weed is a problem. The probability of this insect expanding its host range is low because multiple aspects of the biology would need to change simultaneously. A. trilineatum was released in Australia between 2003 and 2007. A Climex model indicated that coastal areas of Queensland and the Northern Territory would be climatically most suitable for this insect.
Resumo:
Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.
Resumo:
Parthenium is a weed of global significance affecting many countries in Asia, Africa, and the Pacific Islands. Parthenium causes severe human and animal health problems, agricultural losses as well as serious environmental problems. Management options for parthenium include chemical, physical, legislative, fire, mycoherbicides, agronomic practices, competitive displacement and classical biological control. The ability of parthenium to grow in a wide range of habitats, its persistent seed bank, and its allelopathic potential make its management difficult. No single management option would be adequate to manage parthenium across all habitats, and there is a need to integrate various management options (e.g. grazing management, competitive displacement, cultural practices) with classical biological control as a core management option.
Resumo:
This paper discusses how spread of weeds can be minimised by improved knowledge of the weed’s ecology and dispersal, and by better surveillance and treatment methods. Undertaking simple prevention activities reduces the risk of spreading weeds with minimal costs to projects and they noted that field staff and researchers can inadvertently become vectors of weed spread if they do not take adequate precautions. The authors describe several techniques that can be adopted and reference their observations to the eradication program for Siam weed, Chromolaena odorata.
Resumo:
The authors identify and track processes that have resulted in the detection of six tropical weeds targeted for eradication. The habitats and distributions of these species make detection by field officers and members of the public more likely than targeted searches. The eradication program is increasing the scope of detection processes by conducting and documenting activities to improve weed recognition amongst public, government and industry stakeholders.
Resumo:
Mike Day and colleagues recently published their paper 'Factors influencing the release and establishment of weed biocontrol agents' in Proceedings of the 16th Australian Weeds Conference. The CRC for Australian Weed Management facilitated an investigation into the factors influencing the release and establishment of weed biological control agents on a wide variety of Australian weeds. The investigation improved the understanding of post-release ecology of biocontrol agents and generated recommendations for best practice. Factors affecting successful establishment on the weed include host plant characteristics, size of releases, dispersal power of the agent, predation and parasitism, and climate. A best practice guide was produced by the CRC to assist practitioners in designing robust release strategies to increase rates of establishment.
Resumo:
Eve White, Anna Barnes and Gabrielle Vivian-Smith recently published their paper 'Dispersal and establishment of bird-dispersed weed and native species in early successional subtropical habitats' in Proceedings of the 16th Australian Weeds Conference. Eve also presented this paper at the conference. They investigated patterns of dispersal and establishment of bird-dispersed weeds and native species in early successional habitats in northern New South Wales. Patterns varied among growth forms, between native species and weeds, and among vegetation types. Their results indicated that the number of seeds dropped by birds is not necessarily a good predictor of recruitment and that post-dispersal factors, such as microsite characteristics, may be more important influences on seedling recruitment. This knowledge will assist with designing management strategies for bird-dispersed weeds in natural areas.