58 resultados para genotype distribution
Resumo:
The major objective of this experiment was to identify optimum plant population densities for different maize maturity groups depending on the environments’ potential and identify situations that reduce risk of crop failures while maximizing opportunities for better yield when weather conditions are good.
Resumo:
Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con-specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
Objective To describe the influence of the dingo (Canis lupus dingo) on the past, present and future distributions of sheep in Australia. Design The role of the dingo in the rise and fall of sheep numbers is reviewed, revised data are provided on the present distribution and density of sheep and dingoes, and historical patterns of sheep distribution are used to explore the future of rangeland sheep grazing. Results Dingoes are a critical causal factor in the distribution of sheep at the national, regional and local levels. Dingo predation contributed substantially to the historical contraction of the sheep industry to its present-day distribution, which is almost exclusively confined to areas within fenced dingo exclusion zones. Dingo populations and/or their influence are now present and increasing in all sheep production zones of Australia, inclusive of areas that were once dingo free'. Conclusions Rangeland production of wool and sheep meat is predicted to disappear within 30-40 years if the present rate of contraction of the industry continues unabated. Understanding the influence of dingoes on sheep production may help refine disease response strategies and help predict the future distribution of sheep and their diseases.
Resumo:
Electroreception is an ancient sense found in many aquatic animals, including sharks, which may be used in the detection of prey, predators and mates. Wobbegong sharks (Orectolobidae) and angel sharks (Squatinidae) represent two distantly related families that have independently evolved a similar dorso-ventrally compressed body form to complement their benthic ambush feeding strategy. Consequently, these groups represent useful models in which to investigate the specific morphological and physiological adaptations that are driven by the adoption of a benthic lifestyle. In this study, we compared the distribution and abundance of electrosensory pores in the spotted wobbegong shark (Orectolobus maculatus) with the Australian angel shark (Squatina australis) to determine whether both species display a similar pattern of clustering of sub-dermal electroreceptors and to further understand the functional importance of electroreception in the feeding behaviour of these benthic sharks. Orectolobus maculatus has a more complex electrosensory system than S. australis, with a higher abundance of pores and an additional cluster of electroreceptors positioned in the snout (the superficial ophthalmic cluster). Interestingly, both species possess a cluster of pores (the hyoid cluster, positioned slightly posterior to the first gill slit) more commonly found in rays, but which may be present in all benthic elasmobranchs to assist in the detection of approaching predators.
Resumo:
Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.
Resumo:
Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH4 +), and nitrate (NO3 −), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. Weanalyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.
Resumo:
During the past 15 years, surveys to identify virus diseases affecting cool-season food legume crops in Australia and 11 CWANA countries (Algeria, China, Egypt, Ethiopia, Lebanon, Morocco, Sudan, Syria, Tunisia, Uzbekistan and Yemen) were conducted. More than 20,000 samples were collected and tested for the presence of 14 legume viruses by the tissue-blot immunoassay (TBIA) using a battery of antibodies, including the following Luteovirus monoclonal antibodies (McAbs): a broad-spectrum legume Luteovirus (5G4), BLRV, BWYV, SbDV and CpCSV. A total of 195 Luteovirus samples were selected for further testing by RT-PCR using 7 primers (one is degenerate, and can detect a wide range of Luteoviridae virus species and the other six are species-specific primers) at the Virology Laboratory, QDAF, Australia, during 2014. A total of 145 DNA fragments (represented 105 isolates) were sequenced. The following viruses were characterized based on molecular analysis: BLRV from Lebanon, Morocco, Tunisia and Uzbekistan; SbDV from Australia, Syria and Uzbekistan; BWYV from Algeria, China, Ethiopia, Lebanon, Morocco, Sudan, Tunisia and Uzbekistan; CABYV from Algeria, Lebanon, Syria, Sudan and Uzbekistan; CpCSV from Algeria, Ethiopia, Lebanon, Morocco, Syria and Tunisia, and unknown Luteoviridae species from Algeria, Ethiopia, Morocco, Sudan, Uzbekistan and Yemen. This study has clearly shown that there are a number of Polerovirus species, in addition to BWYV, all can produce yellowing/stunting symptoms in pulses (e.g. CABYV, CpCSV, and other unknown Polerovirus species). Based on our knowledge this is the first report of CABYV affecting food legumes. Moreover, there was about 95% agreement between results obtained from serological analysis (TBIA) and molecular analysis for the detection of BLRV and SbDV. Whereas, TBIA results were not accurate when using CpCSV and BWYV McAbs . It seems that the McAbs for CpCSV and BWYV used in this study and those available worldwide, are not virus species specific. Both antibodies, reacted with other Polerovirus species (e.g. CABYV, and unknown Polerovirus). This highlights the need for more accurate characterization of existing antibodies and where necessary the development of better, virus-specific antibodies to enable their use for accurate diagnosis of Poleroviruses.
Resumo:
ABSTRACT: In 2012, giant tiger shrimp Penaeus monodon originally sourced from Joseph Bonaparte Gulf in northern Australia were examined in an attempt to identify the cause of elevated mortalities among broodstock at a Queensland hatchery. Nucleic acid extracted from ethanol-fixed gills of 3 individual shrimp tested positive using the OIE YHV Protocol 2 RT-PCR designed to differentiate yellow head virus (YHV1) from gill-associated virus (GAV, synonymous with YHV2) and the OIE YHV Protocol 3 RT-nested PCR designed for consensus detection of YHV genotypes. Sequence analysis of the 794 bp (Protocol 2) and 359 bp (Protocol 3) amplicons from 2 distinct regions of ORF1b showed that the yellow-head-complex virus detected was novel when compared with Genotypes 1 to 6. Nucleotide identity on the Protocol 2 and Protocol 3 ORF1b sequences was highest with the highly pathogenic YHV1 genotype (81 and 87%, respectively) that emerged in P. monodon in Thailand and lower with GAV (78 and 82%, respectively) that is enzootic to P. monodon inhabiting eastern Australia. Comparison of a longer (725 bp) ORF1b sequence, spanning the Protocol 3 region and amplified using a modified YH30/31 RT-nPCR, provided further phylogenetic evidence for the virus being distinct from the 6 described YHV genotypes. The virus represents a unique seventh YHV genotype (YHV7). Despite the mortalities observed, the role of YHV7 remains unknown.