135 resultados para fleshy fruits


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersal is a significant determinant of the pattern and process of invasions; however, weed dispersal distances are rarely described and descriptions of dispersal kernels are completely lacking for vertebrate-dispersed weeds. Here, we describe dispersal kernels generated by a native disperser, the endangered southern cassowary (Casuarius casuarius, L.) for an invasive, tropical rainforest plant, pond apple (Annona glabra, L.). Pond apple is primarily water-dispersed and is managed as such. We consider whether cassowary dispersal, as a numerically subordinate dispersal mode, provides an additional dispersal service that may modify the invasion process. In infested areas, pond apple seed was common in cassowary dung. Gut passage had no effect on the probability of single seed germination but deposition in clumps or as whole fruits reduced the probability of germination below that of single seeds. Gut passage times ranged from 65 to 1675 min. Combined with cassowary movement data, this resulted in estimated dispersal distances of 12.5-5212 m, with a median distance of 387 m (quartile range 112-787 m). Native frugivores can be effective dispersers of weeds in rainforest and even terrestrial dispersers can provide long-distance dispersal. Importantly, though pond apple might be expected to be almost entirely dispersed downstream and along the margins of aquatic and marine habitats, cassowaries provide dispersal upstream and between drainages, leading to novel dispersal outcomes. Even through the provision of small quantities of novel dispersal outcomes, subordinate dispersal modes can play a significant role in determining invasion pattern and influence the ultimate success of control programs by providing dispersal to locations unattainable via the primary mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive plants are regarded as a major threat to biodiversity worldwide. Yet, in some cases, invasive plants now perform important ecological functions. For example, fleshy-fruited invasive plants provide food that supports indigenous frugivore populations. How can the disparate goals of conservation versus invasive weed control be managed? We suggest using the fruit characteristics of the invasive plant to select replacement indigenous plants that are functionally similar from the perspective of frugivores. These could provide replacement food resources at sites where plants with these characteristics are part of the goal plant community and where such plants would not otherwise regenerate. Replacement plants could also redirect seed dispersal processes to favour indigenous, rather than invasive, plant species. We investigated the utility of this approach by ranking all indigenous fleshy-fruited plant species from a region using a simple model that scored species based upon measures of fruit phenology, morphology, conspicuousness and accessibility relative to a target invasive species, Lantana (Lantana camara). The model successfully produced high scores for indigenous plant species that were used by more of the frugivores of Lantana than a random selection of plants, suggesting that this approach warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website http://www.deedi.qld.gov.au/ (Select: Queenslands Industries - Agriculture Link) This publication has been reprinted as a digital book without any changes to the content published in 2000. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2000. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of papaw. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.daf.qld.gov.au This publication has been reprinted as a digital book without any changes to the content published in 1997. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1997. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of citrus. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1999. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1999. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of capsicum and chilli. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1998. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1998. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of custard apples. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1997. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1997. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of strawberries. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1998. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1998. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of Tomatoes. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1 B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radish sprouts and broccoli sprouts have been implicated in having a potential chemoprotective effect against certain types of cancer. Each contains a glucosinolate that can be broken down to an isothiocyanate capable of inducing chemoprotective factors known as phase 2 enzymes. In the case of broccoli, the glucosinolate, glucoraphanin, is converted to an isothiocyanate, sulforaphane, while in radish a similar glucosinolate, glucoraphenin, is broken down to form the isothiocyanate, sulforaphene. When sprouts are consumed fresh (uncooked), however, the principal degradation product of broccoli is not the isothiocyanate sulforaphane, but a nitrile, a compound with little anti-cancer potential. By contrast, radish sprouts produce largely the anti-cancer isothiocyanate, sulforaphene. The reason for this difference is likely to be due to the presence in broccoli (and absence in radish) of the enzyme cofactor, epithiospecifier protein (ESP). In vitro induction of the phase 2 enzyme, quinone reductase (QR), was significantly greater for radish sprouts than broccoli sprouts when extracts were self-hydrolysed. By contrast, boiled radish sprout extracts (deactivating ESP) to which myrosinase was subsequently added, induced similar QR activity to broccoli sprouts. The implication is that radish sprouts have potentially greater chemoprotective action against carcinogens than broccoli sprouts when hydrolysed under conditions similar to that during human consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Asparagus includes at least six invasive species in Australia. Asparagus aethiopicus and A. africanus are invasive in subtropical Australia, and a third species, A. virgatus is naturalized and demonstrates localized spread in south east Queensland. To better understand how the attributes of these species contribute to their invasiveness, we compared fruit and seed traits, germination, seedling emergence, seed survival, and time-to-maturity. We further investigated dispersal ecology of A. africanus, examining the diet of a local frugivore, the figbird (Sphecotheres viridis) and the effect of gut passage on seedling emergence. Overall, A. aethiopicus was superior in germination and emergence, with the highest mean germination (98.8%) and emergence (94.5%) under optimal conditions and higher emergence (mean of 73.3%) across all treatments. In contrast, A. africanus had the lowest germination under optimal conditions (71.7%) and low mean seedling emergence (49.5%), but had fruits with the highest relative yield (ratio of dry pulp to fruit fresh weight) that were favored by a local frugivore. Figbirds consumed large numbers of A. africanus fruits (~30% of all non-Ficus fruits), and seedling germination was not significantly affected by gut passage compared to unprocessed fruits. Asparagus virgatus germinated poorly under cool, light conditions (1.4%) despite a high optimum mean (95.0%) and had low mean performance across emergence treatments (36.3%). The species also had fruits with a low pulp return for frugivores. For all species, seed survival declined rapidly in the first 12 mo and fell to < 3.2% viability at 36 mo. On the basis of the traits considered, A. virgatus is unlikely to have the invasive potential of its congeners. Uniformly short seed survival times suggest that weed managers do not have to contend with a substantial persistent soil-stored seed bank, but frugivore-mediated dispersal beyond existing infestations will present a considerable management challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radishes are most commonly consumed as a root vegetable, although radish leaves are occasionally used in salads and cooking. While both the radish root and shoot contain glucosinolates with anti-cancer potential, the glucosinolate profile of the root and the shoot are very different. Whereas the root contains mainly glucodehydroerucin (2.8 mol/gFW) (also known as glucoraphasatin), the main glucosinolate components of the shoot are glucoraphanin (2.8 mol/gFW) and glucoraphenin (2.1 mol/gFW). Upon hydrolysis, the latter glucosinolates produce sulforaphane and sulforaphene respectively, both potent inducers of mammalian phase 2 enzymes. Previously, radishes have been dismissed as having minimal anti-cancer potential based on studies with radish roots. However, depending on the cultivar, radish shoots can have up to 45 times the capacity of roots to induce phase 2 enzymes. In fact, shoots of a number of radish cultivars (eg. 'Black Spanish') have similar or greater anti-cancer potential than broccoli florets, a vegetable that has received considerable interest in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Premature or abnormal softening of persimmon fruit within 3-7 days after harvest is a major physiological problem of non-astringent persimmon cultivars grown in subtropical regions of Australia. Up to 30% of consignments may soften rapidly frequently overnight, often resulting in the flesh becoming very soft, completely translucent, and impossible to handle. Incidence of premature soft fruit can vary with season and production location. To study the incidence of this problem, we conducted surveys of fruit harvested from five environmentally-diverse regions of Australia over a two-year period. We found wide variation in the rate of both premature softening and normal softening with differences of up 37 days between orchards in percentage of fruit reaching 50% soft. We found that the rate of fruit softening was exacerbated by lower calcium concentrations at fruit set, shorter fruit development periods and heavier rainfall during the fruit development period. The implications of our findings, in terms of orchard management, export and domestic marketing strategies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.