59 resultados para Wildlife rescue
Resumo:
The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.
Resumo:
Fruiting hybrids are reported for the first time between the genera Citrus L. and Citropsis (Engl.) Swing. & M.Kell. Conventional hybridization using the recently described species Citrus wakonai P.I.Forst. & M.W.Sm. and Citropsis gabunensis (Engl.) Swing. & M.Kell. resulted in high rates of fruit set and seed formation. Although seed were only half normal size, over 90% germinated without the need for embryo rescue techniques. Plant losses were high during the first few months but after six months, the 327 surviving hybrids were potted on. These grew vigorously on their own roots and 35 of them flowered within two years of sowing. Plants flowered continuously but all were pollen-sterile and ovaries abscised shortly after petal fall. However, at 25 months, two newly flowering hybrids began setting fruit. The development, identification, morphology, breeding efficiency, and future implications of this unique germplasm are described.
Resumo:
Implications •As kangaroo meat is sourced from native wildlife, conservation of the species is important in developing sustainable meat harvesting. Landholders, conservationists, and commercial meat producers need to work together to achieve this goal. •The production of high quality meat products from field-harvested carcasses can be augmented through a better understanding of the impact that field conditions and carcass handling have on final meat eating quality. •Food safety is also paramount, with measures taken to minimize the impacts of parasitism and microbial contamination. Any breaches of inspection protocols can only serve to undermine consumer confidence and viability of the industry.
Resumo:
During July/August 2010, 28 Christmas Island flying foxes (Pteropus melanotus natalis) were captured and anesthetized for examination, sample collection, and release to determine the potential role of disease in recent population declines. Measurements and samples were taken for morphologic, hematologic, biochemical, and parasitologic analysis. These are the first blood reference ranges reported for this species. These data are being used to inform investigations into conservation status and population management strategies for the Christmas Island flying fox.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5–305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3–370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3–311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2–205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species
Resumo:
Reproductive efficiency is an important determinant of profitable cattle breeding systems and the success of assisted reproductive techniques (ART) in wildlife conservation programs. Methods of estrous detection used in intensive beef and dairy cattle systems lack accuracy and remain the single biggest issue for improvement of reproductive rates and such methods are not practical for either large-scale extensive beef cattle enterprises or free-living mammalian species. Recent developments in UHF (ultra high frequency) proximity logger telemetry devices have been used to provide a continuous pair-wise measure of associations between individual animals for both livestock and wildlife. The objective of this study was to explore the potential of using UHF telemetry to identify the reproductive cycle phenotype in terms of intensity and duration of estrus. The study was conducted using Belmont Red (interbred Africander Brahman Hereford–Shorthorn) cattle grazing irrigated pasture on Belmont Research Station, northeastern Australia. The cow-bull associations from three groups of cows each with one bull were recorded over a 7-week breeding season and the stage of estrus was identified using ultrasonography. Telemetry data from bull and cows, collected over 4 8-day logger deployments, were log transformed and analyzed by ANOVA. Both the number and duration of bull-cow affiliations were significantly (P < 0.001) greater in estrous cows compared to anestrus cows. These results support the development of the UHF technology as a hands-off and noninvasive means of gathering socio-sexual information on both wildlife and livestock for reproductive management.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100 sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia.
Resumo:
The urban presence of flying-foxes (pteropid bats) in eastern Australia has increased in the last 20 years, putatively reflecting broader landscape change. The influx of large numbers often precipitates community angst, typically stemming from concerns about loss of social amenity, economic loss or negative health impacts from recently emerged bat-mediated zoonotic diseases such as Hendra virus and Australian bat lyssavirus. Local authorities and state wildlife authorities are increasingly asked to approve the dispersal or modification of flying-fox roosts to address expressed concerns, yet the scale of this concern within the community, and the veracity of the basis for concern are often unclear. We conducted an on-line survey to capture community attitudes and opinions on flying-foxes in the urban environment to inform management policy and decision-making. Analysis focused on awareness, concerns, and management options, and primarily compared responses from communities where flying-fox management was and was not topical at the time of the survey. While a majority of respondents indicated a moderate to high level of knowledge of both flying-foxes and Hendra virus, a substantial minority mistakenly believed that flying-foxes pose a direct infection risk to humans, suggesting miscommunication or misinformation, and the need for additional risk communication strategies. Secondly, a minority of community members indicated they were directly impacted by urban roosts, most plausibly those living in close proximity to the roost, suggesting that targeted management options are warranted. Thirdly, neither dispersal nor culling was seen as an appropriate management strategy by the majority of respondents, including those from postcodes where flying-fox management was topical. These findings usefully inform community debate and policy development and demonstrate the value of social analysis in defining the issues and options in this complex human - wildlife interaction. The mobile nature of flying-foxes underlines the need for a management strategy at a regional or larger scale, and independent of state borders.
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program (QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program (StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
Knowledge of the resource requirements of urban predators can improve our understanding of their ecology and assist town planners and wildlife management agencies in developing management approaches that alleviate human-wildlife conflicts. Here we examine food and dietary items identified in scats of dingoes in peri-urban areas of north-eastern Australia to better understand their resource requirements and the potential for dingoes to threaten locally fragmented populations of native fauna. Our primary aim was to determine what peri-urban dingoes eat, and whether or not this differs between regions. We identified over 40 different food items in dingo scats, almost all of which were mammals. Individual species commonly observed in dingo scats included agile wallabies, northern brown bandicoots and swamp wallabies. Birds were relatively common in some areas but not others, as were invertebrates. Dingoes were identified as a significant potential threat to fragmented populations of koalas. Dietary overlap was typically very high or near-identical between regions, indicating that peri-urban dingoes ate the same types or sizes of prey in different areas. Future studies should seek to quantify actual and perceived impacts of, and human attitudes towards, peri-urban dingoes, and to develop management strategies with a greater chance of reducing human-wildlife conflicts.