197 resultados para Virus diseases of plants
Resumo:
Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horse-shoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002-2003 and 2003-2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
Objective: To examine flying foxes (Pteropus spp.) for evidence of infection with Menangle virus. Design: Clustered non-random sampling for serology, virus isolation and electron microscopy (EM). Procedure: Serum samples were collected from 306 Pteropus spp. in northern and eastern Australia and tested for antibodies against Menangle virus (MenV) using a virus neutralisation test (VNT). Virus isolation was attempted from tissues and faeces collected from 215 Pteropus spp. in New South Wales. Faecal samples from 68 individual Pteropus spp. and four pools of faeces were examined by transmission EM following routine negative staining and immunogold labelling. Results: Neutralising antibodies (VNT titres ≥ 8) against MenV were detected in 46% of black flying foxes (P. alecto), 41% of grey-headed flying foxes (P. poliocephalus), 25% of spectacled flying foxes (P. conspicillatus) and 1% of little red flying foxes (P. scapulatus) in Australia. Positive sera included samples collected from P. poliocephalus in a colony adjacent to a piggery that had experienced reproductive disease caused by MenV. Virus-like particles were observed by EM in faeces from Pteropus spp. and reactivity was detected in pooled faeces and urine by immunogold EM using sera from sows that had been exposed to MenV. Attempts to isolate the virus from the faeces and tissues from Pteropus spp. were unsuccessful. Conclusion: Serological evidence of infection with MenV was detected in Pteropus spp. in Australia. Although virus-like particles were detected in faeces, no viruses were isolated from faeces, urine or tissues of Pteropus spp.
Resumo:
A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004-2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus-B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites.
Resumo:
Sw-5 is an important disease resistance gene of tomato, providing broad resistance to Tomato spotted wilt virus (TSWV). A cleaved amplified polymorphic sequence (CAPS) marker, closely linked to the gene, has been reported. Although the Sw-5 locus has been characterised, a gene-specific marker has not been developed. This paper presents a PCR-based marker-system that consists of the co-amplification of a dominant marker representing the Sw-5 gene sequence, and the modified CAPS marker as a positive control and indicator of genotype.
Resumo:
Strawberry lethal yellows (SLY) disease in Australia is associated with the phytoplasmas Candidatus Phytoplasma australiense and tomato big bud, and a rickettsia-like-organism (RLO). Ca. P. australiense is also associated with strawberry green petal (SGP) disease. This study investigated the strength of the association of the different agents with SLY disease. We also documented the location of SLY or SGP plants, and measured whether they were RLO or phytoplasma positive. Symptomatic strawberry plants collected from south-east Queensland (Australia) between January 2000 and October 2002 were screened by PCR for both phytoplasmas and the RLO. Two previously unreported disease symptoms termed severe fruit distortion (SFD) and strawberry leaves from fruit (SLF) were observed during this study but there was no clear association between these symptoms and phytoplasmas or the RLO. Only two SGP diseased plants were observed and collected, compared with 363 plants with SLY disease symptoms. Of the 363 SLY samples, 117 tested positive for the RLO, 67 tested positive for Ca. P. australiense AGY strain and 11 plants tested positive for Ca. P. australiense PYL variant strain. On runner production farms at Stanthorpe, Queensland the RLO was detected in SLY diseased plants more frequently than for the phytoplasmas. On fruit production farms on the Sunshine Coast, Queensland, Ca. P. australiense was detected in SLY disease plants more frequently than the RLO.
Resumo:
Herpesviral haematopoietic necrosis is a disease of goldfish, Carassius auratus, caused by Cyprinid herpesvirus-2 (CyHV-2) infection. Quantitative PCR was carried out on tissue homogenates from healthy goldfish fingerlings, broodfish, eggs and fry directly sampled from commercial farms, from moribund fish submitted to our laboratory for disease diagnosis, and on naturally-infected CyHV-2 carriers subjected to experimental stress treatments. Healthy fish from 14 of 18 farms were positive with copy numbers ranging from tens to 10(7) copies mu g(-1) DNA extracted from infected fish. Of 118 pools of broodfish tested, 42 were positive. The CyHV-2 was detected in one lot of fry produced from disinfected eggs. Testing of moribund goldfish, in which we could not detect any other pathogens, produced 12 of 30 cases with 10(6)-10(8) copies of CyHV-2 mu g(-1) DNA extracted. Subjecting healthy CyHV-2 carriers to cold shock (22-10 degrees C) but not heat, ammonia or high pH, increased viral copy numbers from mean copy number (+/- SE) of 7.3 +/- 11 to 394 +/- 55 mu g(-1) DNA extracted after 24 h. CyHV-2 is widespread on commercial goldfish farms and outbreaks apparently occur when healthy carriers are subjected to a sharp temperature drop followed by holding at the permissive temperature for the disease.
Resumo:
Rabbit Haemorrhagic Disease Virus (RHDV) was introduced to Australia in 1995 for the control of wild rabbits. Initial outbreaks greatly reduced rabbit numbers and the virus has continued to control rabbits to varying degrees in different parts of Australia. However, recent field evidence suggests that the virus may be becoming less effective in those areas that have previously experienced repeated epizootics causing high mortality. There are also reports of rabbits returning to pre-1995 density levels, Virus and host can be expected to co-evolve. The host will develop resistance to the virus with the virus subsequently changing to overcome that resistance. It has been 12 years since the release of RHDV and it is an opportune time to examine where the dynamic currently stands between RHDV and rabbits. Laboratory challenge tests have indicated that resistance to RHDV has developed to different degrees in populations throughout Australia. In one population a low dose (1:25 dilution) of Czech strain RHDV failed to infect a single susceptible rabbit, yet infected a low to high (up to 73%) percentage across other populations tested. Different selection pressures are present in these populations and will be driving the level of resistance being seen. The mechanisms and genetics behind the development of resistance are also important as the on-going use of RHDV as a control tool in the management of rabbits relies on our understanding of factors influencing the efficacy of the virus. Understanding how resistance has developed may provide clues on how best to use the virus to circumvent these mechanisms. Similarly, it will help in managing populations that have yet to develop high levels of resistance.
Resumo:
In Australia, disease caused by betanodavirus has been reported in an increasing number of cultured finfish since the first report of mortalities in 1990. Partial coat protein gene sequences from the T2 or T4 regions of 8 betanodaviruses from barramundi Lates calcarifer, sleepy cod Oxyeleotris lineolata, striped trumpeter Latris lineata, barramundi cod Cromileptes altivelis, Australian bass Macquaria novemaculata and gold-spotted rockcod Epinephelus coioides from several Australian states were determined. Analysis of the 606 bp nucleotide sequences of the T2 region of 4 isolates demonstrated the close relationship with isolates from the red-spotted grouper nervous necrosis virus (RGNNV) genotype and the Cluster Ia subtype. Comparison of a smaller 289 bp sequence from the T4 region identified 2 distinct groupings of the Australian isolates within the RGNNV genotype. Isolates from barramundi from the Northern Territory, barramundi, sleepy cod, barramundi cod and gold-spotted rockcod from Queensland, and striped trumpeter from Tasmania shared a 96.2 to 99.7%, nucleotide identity with each other. These isolates were most similar to the RGNNV genotype Cluster Ia. Isolates from Australian bass from New South Wales and from barramundi from South Australia shared a 98.6% sequence identity with each other. However, these isolates only shared an 85.8 to 87.9%, identity with the other Australian isolates and representative RGNNV isolates. The closest nucleotide identity to sequences reported in the literature for the New South Wales and South Australian isolates was to an Australian barramundi isolate (Ba94Aus) from 1994. These 2 Australian isolates formed a new subtype within the RGNNV genotype, which is designated as Cluster Ic.
Resumo:
An outbreak of acute respiratory disease in layers was diagnosed as being of dual nature due to fowlpox and infectious laryngotracheitis using a multidisciplinary approach including virus isolation, histopathology, electron microscopy and polymerase chain reaction (PCR). The diagnosis was based on virus isolation of gallid herpesvirus 1 (GaHV-1) in chicken kidney cells and fowlpox virus (FWPV) in 9-day-old chicken embryonated eggs inoculated via the chorioallantoic membrane. The histopathology of tracheas from dead birds revealed intra-cytoplasmic and intra-nuclear inclusions suggestive of poxvirus and herpesvirus involvement. The presence of FWPV was further confirmed by electron microscopy, PCR and histology. All FWPV isolates contained the long terminal repeats of reticuloendotheliosis virus as demonstrated by PCR. GaHV-1 isolates were detected by PCR and were shown to have a different restriction fragment length polymorphism pattern when compared with the chicken embryo origin SA2 vaccine strain; however, they shared the same pattern with the Intervet chicken embryo origin vaccine strain. This is a first report of dual infection of chickens with GaHV-1 and naturally occurring FWPV with reticuloendotheliosis virus insertions. Further characterization of the viruses was carried out and the results are reported here.
Resumo:
This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hubner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed 'super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant.
Resumo:
The productivity of containerized and bare-rooted plants of strawberry (Fragaria * ananassa) was investigated over 4 years in southeastern Queensland, Australia. In the first experiment, plants in small, 75-cm3 cells were compared with bare-rooted plants of 'Festival' and 'Sugarbaby'. A similar experiment was conducted in year 2 with these two cultivars, plus 'Rubygem'. In year 3, plants in large, 125-cm3 cells were compared with small and large bare-rooted plants of 'Festival' and 'Rubygem'. Treatments in each of these experiments were planted on the same date. In the final experiment, plants in large cells and bare-rooted plants of 'Festival' were planted in late March, early April, mid-April, or early May. The plants grown in small cells produced 60% to 85% of the yields of the bare-rooted plants, whereas the yield of plants in large cells was equal to that of the bare-rooted plants. Containerized plants are twice as expensive as bare-rooted plants (A$0.60 vs. A$0.32) (A$=Australian dollar), and gave only similar or lower returns than the bare-rooted plants (A$0.54 to A$3.73 vs. A$1.40 to A$4.09). It can be concluded that containerized strawberry plants are not economically viable in subtropical Queensland under the current price structure and growing system. There was a strong relationship between yield and average plant dry weight (leaves, crowns, and roots) in 'Festival' in the last three experiments, where harvesting continued to late September or early October. Productivity increased by about 18 g for each gram increase in plant dry weight, indicating the dependence of fruit production on vegetative growth in this environment.
Resumo:
Develops and extends DEEDI and partner technologies, improves yields and quality by removing virus diseases and some pests. Objectives: 1.Develop and test sweet potato pest and disease control strategies 2.Increase dissemination and adoption of pathogen tested and Integrated Pest Management strategy for pest and disease control.
Resumo:
Diseases remain a significant impediment to the achievement of maximum yield potential of pulses (chickpea, peanut and mungbean) and sunflowers in the GRDC northern region. This project worked closely with public and private breeding programs to identify sources of resistance to the major diseases of pulses and sunflower that dominate in the region. Through varied surveillance activities, a watching brief on pulse and sunflower diseases was maintained and a timely and appropriate response was made to several significant disease outbreaks. Information on the biology and management of diseases was extended to clients in a wide variety of ways.
Resumo:
A multiplex real-time PCR was developed for the detection and differentiation of two closely related bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5). The multiplex real-time PCR combines a duplex real-time PCR that targets the DNA polymerase gene of BoHV-1 and BoHV-5 and a real-time PCR targeting mitochondrial DNA, as a house-keeping gene, described previously by Cawthraw et al. (2009). The assay correctly identified 22 BoHV-1 and six BoHV-5 isolates from the Biosecurity Sciences Laboratory virus collection. BoHV-1 and BoHV-5 were also correctly identified when incorporated in spiked semen and brain tissue samples. The detection limits of the duplex assay were 10 copies of BoHV-1 and 45 copies of BoHV-5. The multiplex real-time PCR had reaction efficiencies of 1.04 for BoHV-1 and 1.08 for BoHV-5. Standard curves relating Ct value to template copy number had correlation coefficients of 0.989 for BoHV-1 and 0.978 for BoHV-5. The assay specificity was demonstrated by testing bacterial and viral DNA from pathogens commonly isolated from bovine respiratory and reproductive tracts. The validated multiplex real-time PCR was used to detect and differentiate BoHV-1 and BoHV-5 in bovine clinical samples with known histories.