56 resultados para Unit-root


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which low temperature affects flowering and fruit set of grapevines are poorly understood, as is the specific response of the grapevine root system and inflorescence to low temperature effects that reduce fruit set. This study aimed to determine the responses of the root system and inflorescence of the grapevine 'Chardonnay' to low temperature (10 degrees C) during flowering, and considered the possible mechanisms of low temperature effects on those parts. Temperature treatments of 10 degrees C or 20 degrees C were imposed to potted 'Chardonnay' grapevines in a glasshouse for up to two weeks during the early stages of flowering. When the root system alone was exposed to 10 degrees C (with the rest of the plant at 20 degrees C) during flowering, the number of attached berries and percentage fruit set were significantly reduced by 50 % than when the root system alone was exposed to 20 degrees C. Whereas, exposure of the inflorescence alone to 10 degrees C (with the rest of the plant at 20 degrees C) delayed flowering, allowed rachis to grow longer, and increased both the number of attached berries (from 22 to 62 per vine) and fruit set (from 8 % to, 20 %), than when the inflorescence alone was exposed to 20 degrees C. This study will enhance our understanding of the possible mechanisms of low temperature effects on grapevine fruit set and productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The root-lesion nematodes (RLN) Pratylenchus thornei and P. neglectus are widely distributed in Australian grain producing regions and can reduce the yield of intolerant wheat cultivars by up to 65 , costing the industry ~123 M AUD/year. Consequently, researchers in the northern, southern and western regions have independently developed procedures to evaluate the resistance of cereal cultivars to RLN. To compare results, each of the three laboratories phenotyped a set of 26 and 36 cereal cultivars for relative resistance/susceptibility to P. thornei and P. neglectus respectively. The northern and southern regions also investigated the effects of planting time and experiment duration on RLN reproduction and cultivar ranking. Results show the genetic correlation between cultivars tested using the northern and southern procedures evaluating P. thornei resistance was 0.93. Genetic correlations between experiments using the same procedure, but with different planting times, were 0.99 for both northern and southern procedures. The genetic correlation between cultivars tested using the northern, southern and western procedures evaluating P. neglectus resistance ranged from 0.71 to 0.95. Genetic correlations between experiments using the same procedure but with different planting times ranged from 0.91 to 0.99. This study established that, even though experiments were conducted in different geographic locations and with different trial management practices, the diverse nematode resistance screening procedures ranked cultivars similarly. Consequently, RLN resistance data can be pooled across regions to provide national consensus ratings of cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pratylenchus thornei is a major pathogen of wheat in Australia. Two glasshouse experiments with four wheat cultivars that had different final populations (Pf) of P. thornei in the field were used to optimise conditions for assessing resistance. With different initial populations (Pi) ranging up to 5250 P. thornei/kg soil, Pf of P. thornei increased to 16 weeks after sowing, and then decreased at 20 weeks in some cultivar x Pi combinations. The population dynamics of P. thornei up to 16 weeks were best described by a modified exponential equation P f (t) = aP i e kt where P f (t) is the final population density at time t, P i is the initial population density, a is the proportion of P i that initiates population development, and k is the intrinsic rate of increase of the population. The cultivar GS50a had very low k values at Pi of 5250 and 1050 indicating its resistance, Suneca and Potam had high k values indicating susceptibility, whereas intolerant Gatcher had a low value at the higher Pi and a high value at the lower Pi. Nitrate fertiliser increased plant growth and Pf values of susceptible cultivars, but in unplanted soil it decreased Pf. Nematicide (aldicarb 5 mg/kg soil) killed P. thornei more effectively in planted than in unplanted soil and increased plant growth particularly in the presence of N fertiliser. In both experiments, the wheat cultivars Suneca and Potam were more susceptible than the cultivar GS50a reflecting field results. The method chosen to discriminate wheat cultivars was to assess Pf after growth for 16 weeks in soil with Pi ~1050–5250 P. thornei/kg soil and fertilised with 200 mg NO3–N/kg soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water availability is a major limiting factor for wheat (Triticum aestivum L.) in rain-fed agricultural systems worldwide. Root architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root traits in wheat breeding programs has been largely limited due to the lack of suitable phenotyping methods. The aim of this research was to develop a low-cost high-throughput phenotyping method to facilitate selection for desirable root traits. We developed a method to assess ‘seminal root angle’ and ‘seminal root number’ in seedlings – two proxy traits associated to root architecture of mature wheat plants (1). The method involves measuring the angle between the first pair of seminal roots and the number of roots of wheat seedlings grown in transparent pots (Figure 1). Images captured at 5 to 10 days after sowing are analyzed to calculate seminal root angle and number. Performing this technique under “speed breeding” conditions (plants grown at a density of 600 plants / m2, under controlled temperature and constant light) allows the selection based on the desired root traits of up to 5 consecutive generations within 12 months. Alternatively, when focusing only on germplasm screening, up to 52 successive phenotypic assays can be conducted within 12 months. This approach has been shown to be highly reproducible, it requires little resource (time, space, and labour) and can be used to rapidly enrich breeding populations with desirable alleles for narrow root angle and a high number of seminal roots to indirectly target the selection of deeper root system with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with the climate model projections, especially in summer rainfall dominant regions including some Australian, Indian, South American and African cropping regions, where winter crops mainly rely on deep stored water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many plantation eucalypts are difficult to propagate from cuttings, and their rooted cuttings often possess very few adventitious roots. We microscopically examined the stem anatomy of cuttings from 12 species of eucalypts and we determined whether adventitious root formation in auxin-treated cuttings of four species was limited to particular positions around the vascular tissue. Most species contained a central pith that was arranged in a four-pointed stellate pattern. The surrounding vascular tissue was also arranged in a stellate pattern near the shoot apex but it developed a more rectangular shape at the outer phloem as the stems enlarged radially. Adventitious roots formed at, or slightly peripheral to, the vascular cambium, and they formed at both the corners and the sides of the rectangular-shaped vascular tissue. The study highlighted that auxin-treated eucalypt cuttings can produce roots at multiple positions around the vascular tissue and so propagation methods can aim to produce more than four adventitious roots per rooted cutting. Higher numbers of adventitious roots could improve the root system symmetry, stability, survival and growth rate of clonal eucalypt trees. © 2015 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley (Hordeum vulgare L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (RAQ2/RNQ4) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of root dry matter (DM) allocation, in relation to differing vigour conferred by rootstock cultivars, is required to understand the structural relationships between rootstock and scion. We investigated the mass of roots (four size classes up to 23 mm diameter) by coring proximal to five polyembryonic mango rootstock cultivars known to differ in their effects on the vigour and productivity of scion cultivar ‘Kensington Pride’, in a field trial of 13-year-old trees. Significant differences in fine (<0.64 and 0.64–1.88 mm diameter) and small (1.88–7.50 mm) root DM contents were observed between rootstock cultivars. There was a complex relationship between the amount of feeder (fine and small size classes) roots and scion size (trunk cross sectional area, TCSA), with intermediate size trees on rootstock MYP having the most feeder roots, while the smallest trees, on the rootstock Vellaikulamban had the least of these roots. Across rootstock cultivars, tree vigour (TCSA growth rate) was negatively and significantly related to the ratio of fine root DM/scion TCSA, suggesting this may be a useful indicator of the vigour that different rootstocks confer on the scion. In contrast non-ratio root DM and scion TCSA results had no significant relationships. The significant rootstock effects on orchard root growth and tree size could not be predicted from earlier differences in nursery seedling vigour, nor did seedling vigour predict root DM allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pratylenchus thornei is a root-lesion nematode (RLN) of economic significance in the grain growing regions of Australia. Chickpea (Cicer arietinum) is a significant legume crop grown throughout these regions, but previous testing found most cultivars were susceptible to P. thornei. Therefore, improved resistance to P. thornei is an important objective of the Australian chickpea breeding program. A glasshouse method was developed to assess resistance of chickpea lines to P. thornei, which requires relatively low labour and resource input, and hence is suited to routine adoption within a breeding program. Using this method, good differentiation of chickpea cultivars for P. thornei resistance was measured after 12 weeks. Nematode multiplication was higher for all genotypes than the unplanted control, but of the 47 cultivars and breeding lines tested, 17 exhibited partial resistance, allowing less than two fold multiplication. The relative differences in resistance identified using this method were highly heritable (0.69) and were validated against P. thornei data from seven field trials using a multi-environment trial analysis. Genetic correlations for cultivar resistance between the glasshouse and six of the field trials were high (>0.73). These results demonstrate that resistance to P. thornei in chickpea is highly heritable and can be effectively selected in a limited set of environments. The improved resistance found in a number of the newer chickpea cultivars tested shows that some advances have been made in the P. thornei resistance of Australian chickpea cultivars, and that further targeted breeding and selection should provide incremental improvements.