55 resultados para Southern state
Resumo:
Southern hairy-nosed wombats (Lasiorhinus latifrons) inhabiting degraded habitat in South Australia were recently identified with extensive hair loss and dermatitis and were in thin to emaciated body condition. Pathological and clinicopathological investigations on affected juvenile wombats identified a toxic hepatopathy suggestive of plants containing pyrrolizidine alkaloids, accompanied by photosensitive dermatitis. Hepatic disease was suspected in additional wombats on the basis of serum biochemical analysis. Preliminary toxicological analysis performed on scats and gastrointestinal contents from wombats found in this degraded habitat identified a number of toxic pyrrolizidine alkaloids consistent with ingestion of Heliotropeum europaeum. Although unpalatable, ingestion may occur by young animals due to decreased availability of preferred forages in degraded habitats and the emergence of weeds around the time of weaning of naive animals. Habitat degradation leading to malnutrition and ingestion of toxic weed species is a significant welfare issue in this species.
Resumo:
Objective To establish the prevalence of anthelmintic resistance in ovine gastrointestinal nematodes in southern Queensland. Design An observational parasitological study using the faecal egg count reduction test. Methods Sheep farms (n = 20) enrolled in this study met the twin criteria of using worm testing for drench decisions and having concerns about anthelmintic efficacy. On each farm, 105 sheep were randomly allocated to one of six treatment groups or an untreated control group. Faecal samples were collected on day 0 and days 10–14 for worm egg counts and larval differentiation. Single- and multi-combination anthelmintics, persistent and non-persistent, oral liquid or capsule, pour-on and injectable formulations were tested. Monepantel was not tested. Farmers also responded to a questionnaire on drenching practices. Results Haemonchus contortus was the predominant species. Efficacy <95% was recorded on 85% of farms for one or more anthelmintics and on 10% of farms for six anthelmintics. No resistance was identified on three farms. The 4-way combination product was efficacious (n = 4 farms). Napthalophos resistance was detected on one farm only. Resistance to levamisole (42% of farms), moxidectin injection (50% of farms) and the closantel/abamectin combination (67% of farms) was identified. Moxidectin oral was efficacious against Trichostrongylus colubriformis, which was predominant on only one farm. Of the farms tested, 55% ran meat breeds, 60% dosed more than the recommended dose rate and 70% always, mostly or when possible practised a ‘drench and move’ strategy. Conclusion This level of anthelmintic resistance in southern Queensland will severely compromise worm control and force increased use of monepantel.
Resumo:
Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.
Resumo:
Trials in the Condamine-Balonne basin, Australia, compared 11 promising perennial pasture grass accessions (4 Bothriochloa, 2 Cenchrus, 2 Urochloa and 1 each of Digitaria, Eragrostis and Panicum species) against the best similar commercial cultivars on the basis of ease of establishment from seed, persistence once established, forage yield and ease of seed production. Accessions sown at a site were determined by prior experience with them on a range of soils. High quality seed was relatively easy to produce for both Urochloa species and for Eragrostis curvula CPI 30374 but problematic for the Bothriochloa spp. Once established, all accessions persisted for 3–5 years and most were well grazed, but adequate establishment was sometimes a problem with Panicum stapfianum and Bothriochloa ewartiana. The dry matter yield ratings of the non-commercial lines were similar to those of the commercial equivalents of the same species. While agronomically valuable, none of the promising new grasses was considered worthy of commercialization at this point because their strengths did not warrant the setting up of a seed-production business in competition with current commercial enterprises. Long-standing cultivars such as Gayndah buffel and Nixon sabi grass continued to exhibit their superior pasture qualities.
Resumo:
The prospect of climate change has revived both fears of food insecurity and its corollary, market opportunities for agricultural production. In Australia, with its long history of state-sponsored agricultural development, there is renewed interest in the agricultural development of tropical and sub-tropical northern regions. Climate projections suggest that there will be less water available to the main irrigation systems of the eastern central and southern regions of Australia, while net rainfall could be sustained or even increase in the northern areas. Hence, there could be more intensive use of northern agricultural areas, with the relocation of some production of economically important commodities such as vegetables, rice and cotton. The problem is that the expansion of cropping in northern Australia has been constrained by agronomic and economic considerations. The present paper examines the economics, at both farm and regional level, of relocating some cotton production from the east-central irrigation areas to the north where there is an existing irrigation scheme together with some industry and individual interest in such relocation. Integrated modelling and expert knowledge are used to examine this example of prospective climate change adaptation. Farm-level simulations show that without adaptation, overall gross margins will decrease under a combination of climate change and reduction in water availability. A dynamic regional Computable General Equilibrium model is used to explore two scenarios of relocating cotton production from south east Queensland, to sugar-dominated areas in northern Queensland. Overall, an increase in real economic output and real income was realized when some cotton production was relocated to sugar cane fallow land/new land. There were, however, large negative effects on regional economies where cotton production displaced sugar cane. It is concluded that even excluding the agronomic uncertainties, which are not examined here, there is unlikely to be significant market-driven relocation of cotton production.
Resumo:
Maize grown in eastern and southern Africa experiences random occurrences of drought. This uncertainty creates difficulty in developing superior varieties and their agronomy. Characterisation of drought types and their frequencies could help in better defining selection environments for improving resistance to drought. We used the well tested APSIM maize model to characterise major drought stress patterns and their frequencies across six countries of the region including Ethiopia, Kenya, Tanzania, Malawi, Mozambique and Zimbabwe. The database thus generated covered 35 sites, 17 to 86 years of daily climate records, 3 varieties and 3 planting densities from a total of 11,174 simulations. The analysis identified four major drought environment types including those characterised by low-stress which occurred in 42% of the years, mid-season drought occurring in 15% of the years, late-terminal stress which occurred in 22% of the years and early-terminal drought occurring in 21% of the years. These frequencies varied in relation to sites, genotypes and management. The simulations showed that early terminal stress could result in a yield reduction of 70% compared with low-stress environmental types. The study presents the importance of environmental characterization in contributing to maize improvement in eastern and southern Africa.
Resumo:
Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation.
Resumo:
Fresh meat baits containing sodium fluoroacetate (1080) are widely used for controlling feral pigs in Queensland, but there is a potential poisoning risk to non-target species. This study investigated the non-target species interactions with meat bait by comparing the time until first approach, investigation, sample and consumption, and whether dying bait green would reduce interactions. A trial assessing species interactions with undyed bait was completed at Culgoa Floodplain National Park, Queensland. Meat baits were monitored for 79 consecutive days with camera traps. Of 40 baits, 100% were approached, 35% investigated (moved) and 25% sampled, and 25% consumed. Monitors approached (P < 0.05) and investigated (P < 0.05) the bait more rapidly than pigs or birds, but the median time until first sampling was not significantly different (P > 0.05), and did not consume any entire bait. A trial was conducted at Whetstone State Forest, southern Queensland, with green-dyed and undyed baits monitored for eight consecutive days with cameras. Of 60 baits, 92% were approached and also investigated by one or more non-target species. Most (85%) were sampled and 57% were consumed, with monitors having slightly more interaction with undyed baits than with green-dyed baits. Mean time until first approach and sample differed significantly between species groups (P = 0.038 and 0.007 respectively) with birds approaching sooner (P < 0.05) and monitors sampling later (P < 0.05) than other (unknown) species (P > 0.05). Undyed bait was sampled earlier (mean 2.19 days) than green-dyed bait (2.7 days) (P = 0.003). Data from the two trials demonstrate that many non-target species regularly visit and sample baits. The use of green-dyed baits may help reduce non-target uptake, but testing is required to determine the effect on attractiveness to feral pigs. Further research is recommended to quantify the benefits of potential strategies to reduce the non-target uptake of meat baits to help improve the availability of bait to feral pigs.
Resumo:
Eight Cylindropuntia species have naturalised in Australia and pose serious economic, environmental and social impacts. Two biotypes of Dactylopius tomentosus have been used as bio-control agents to control different Cylindropuntia species. The host range of four additional biotypes of Dactylopius tomentosus from southern USA was investigated. Feeding and development were restricted to the genus Cylindropuntia. However, they showed differences in specificity within this genus and some biotypes discriminated between the provenances of C. rosea and C. tunicata. Efficacy trials were conducted to determine whether populations of each biotype could be sustained on the naturalised Cylindropuntia species and if these populations could retard the growth or kill these plants. The acanthocarpa biotype offers potential control of C. rosea (Lorne Station), while the cylindropuntia sp. biotype shows great potential to control C. rosea (Grawin). The cylindropuntia sp. biotype also had a high impact on C. kleiniae and C. imbricata, and a moderate impact on C. leptocaulis and C. prolifera. The acanthocarpa X echinocarpa biotype had its greatest impact on C. tunicata (Grawin), killing this plant in 18 weeks. A fourth biotype, leptocaulis, was damaging to some species, but was less effective than the other biotypes. Cylindropuntia spinosior is the only naturalised species in Australia where no effective biocontrol agent has been found.