107 resultados para Soil testing
Resumo:
This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.
Resumo:
Lantana camara is a recognized weed of worldwide significance due to its extensive distribution and its impacts on primary industries and nature conservation. However, quantitative data on the impact of the weed on soil ecosystem properties are scanty, especially in SE Australia, despite the pervasive presence of the weed along its coastal and inland regions. Consequently, mineral soils for physicochemical analyses were collected beneath and away from L. camara infestations in four sites west of Brisbane, SE Australia. These sites (hoop pine plantation, cattle farm, and two eucalyptus forests with occasional grazing and a fire regime, respectively) vary in landscape and land-use types. Significant site effect was more frequently observed than effect due to invasion status. Nonetheless, after controlling for site differences, ~50% of the 23 soil traits examined differed significantly between infested and non-infested soils. Moisture, pH, Ca, total and organic C, and total N (but not exchangeable N in form of NO3-) were significantly elevated, while sodium, chloride, copper, iron, sulfur, and manganese, many of which can be toxic to plant growth if present in excess levels, were present at lower levels in soils supporting L. camara compared to soils lacking the weed. These results indicate that L. camara can improve soil fertility and influence nutrient cycling, making the substratum ideal for its own growth and might explain the ability of the weed to outcompete other species, especially native ones.
Resumo:
Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.
Resumo:
The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.
Cultivar-specific effects of pathogen testing on storage root yield of sweetpotato, Ipomoea batatas.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweetpotato, Ipomoea batatas, inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT) clones of 14 sweetpotato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study. Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars. .
Resumo:
To experimentally investigate the effect of the “SKIM” mechanical foam fractionator on suspended material and the nutrient levels in prawn farm effluent, a series of standardised short-term treatments were applied to various effluent types in a static 10,000-litre water body. Prawn pond effluents were characterised by watercolour and dominance of phytoplankton species. Three effluent types were tested, namely 1) particulate-rich effluent with little apparent phytoplankton, 2) green mircoalgal bloom predominately made up of single celled phytoplankton, and 3) brown microalgal bloom with higher prevalence of diatoms. The effluent types were similar (P>0.05) in non-volatile particulate material, and nitrate/nitrite but varied from each other in the following ways: 1) The particulate-rich effluents were lower (P<0.05) in volatile solids (compared to brown blooms), total Kjeldahl nitrogen, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a (compared to both green and brown blooms). 2) The brown blooms were higher (P<0.05) in ammonia (compared to green blooms), total nitrogen and total phosphorus (compared to both green and particulate-rich effluent), but were lower (P<0.05) in inorganic phosphorus (compared to both green and particulate-rich effluent). 3) The green blooms were higher (P<0.05) in dissolved (both organic and inorganic) phosphorus (compared to both brown and particulate-rich effluents). Although the effluent types varied significantly in these aspects the effect of the Skim treatment was similar for all parameters measured except total phosphorus. Bloom type and Skim-treatment period significantly (P<0.05) affected total Kjeldahl phosphorus concentrations. For all effluent types there was a continuous significant reduction (P<0.05) in total Kjeldahl phosphorus during the initial 6-hour treatment period. Levels of total suspended solids and volatile suspended solids in all effluent types were significantly (P<0.05) reduced in the first 2 hours but not thereafter. Non-volatile suspended solids were also significantly (P<0.05) reduced in the first 2 hours (30 to 40 % reduction) and a further 40% reduction occurred in the particulate-rich effluent over the next 2 hours. Mean values for total ammonia, dissolved organic nitrogen, total Kjeldahl nitrogen, total nitrogen, chlorophyll a and dissolved organic or inorganic phosphorus levels were not significantly (P>0.05) affected by the Skim unit in any bloom type during the initial 6 hours of testing. Nevertheless, non-significant nitrogen reductions did occur. Foam production by the Skim unit varied with different blooms, resulting in different concentrate volumes and different end points for separate experiments. Concentrate volumes were generally high for the particulate-rich and green blooms (175 – 370 litres) and low for the brown blooms (25 – 80 litres). This was due to the low tendency of the brown bloom to produce foam. This generated higher nutrient concentrations in the associated condensed foam, but may have limited the treatment efficiency. The results suggest that in this application, the Skim unit did not remove micro-algae as effectively as was anticipated. However, it was effective at removing other suspended solids. Considering these attributes and the other uses of this machinery documented by the manufactures, the unit’s oxygenation mixing capacities coupled with inorganic solids removal may provide a suitable mechanism for construction of a continuously mixed bioreactor that utilises the filtration and profit making abilities of bivalves.
Resumo:
In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.
Resumo:
Respiratory bacterial pathogens in pigs are currently treated with antibiotics. Intervet - Schering Plough markets an antibiotic called Nurflor (Florfenicol) targeting respiratory pathogens. This project tests the effectiveness of this antibiotic against a series of respiratory pathogens. 6 isolates will be tested per serovar/strain and the isolates will be from 4 different farms using MIC testing. The sensitivity of Florfenicol will be compared to sensitivity of the organisms to Tilmicosin and Amoxicillin. Development of resistance to certain antibiotics have been reported, so it is important to have alternative antibiotics available to treat the respiratory pathogens on farms.
Resumo:
The turf industry needs to access a range of more selective, effective and environmentally acceptable pesticides, which will help to address environmental concerns while maintaining the industry's internationally competitive status. This includes both new pesticides being developed globally for turf use and older generic chemicals previously registered for other agricultural purposes and now requiring extension of that registration for use in turf.
Resumo:
Vegetable plant and Soil health.
Resumo:
Fruit fly host status testing of a new passionfruit cultivar.
Resumo:
Quantifying surfactant interaction effects on soil moisture and turf quality.
Resumo:
The effectiveness of Amistar and ASM combinations, in reducing the severity of postharvest anthracnose and stem end rot in mango.
Resumo:
The main outputs anticipated include enchanced knowledge of key water-nutrient dynamics in relation to key soil management techniques and a suite of improved and practical soil management options in sweet potatoes.
Resumo:
The purpose of the report is to summarise progress in developing vegetable production systems with improved soil health that overcome soil limitations with the potential to suppress soil borne diseases. Management approaches to soil health improvement were regionally specific to overcome regional soil limitations in different production environments.