58 resultados para SPORE GERMINATION
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21 degrees C (optimum temperature, OT) and 38 : 21 degrees C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17-63%) and seed-set percentage (7-65%). The two traits were strongly and positively associated (R-2 = 0.93, n = 36, P < 0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.
Resumo:
Corymbia species from different sections hybridize readily, with some of increasing economic importance to plantation forestry. This study explores the locations of reproductive barriers between interspecific Corymbia hybrids and investigates the reproductive success of a wide taxonomic range of C. torelliana hybrid crosses. Pollen, pistil and embryo development were investigated for four C. torelliana crosses (C. torelliana, C. citriodora subsp. citriodora, C. tessellaris and C. intermedia) using fluorescent and standard microscopy to identify the locations of interspecific reproductive isolating barriers. Corymbia torelliana was also crossed with 16 taxa, representing six of the seven Corymbia sections, both Corymbia subgenera and one species each from the related genera, Angophora and Eucalyptus. All crosses were assessed for capsule and seed yields. Interspecific C. torelliana hybridization was controlled by pre-zygotic reproductive isolating barriers inhibiting pollen adhesion to the stigma, pollen germination, pollen tube growth in the style and pollen tube penetration of the micropyle. Corymbia torelliana (subgenus Blakella, sect. Torellianae) was successfully hybridized with Corymbia species from subgenus Blakella, particularly C. citriodora subsp. citriodora, C. citriodora subsp. variegata, C. henryi (sect. Maculatae) and C. tessellaris (sect. Abbreviatae), and subgenus Corymbia, particularly C. clarksoniana and C. erythrophloia (sect. Septentrionales). Attempted intergeneric hybrids between C. torelliana and either Angophora floribunda or Eucalyptus pellita were unsuccessful. Corymbia hybrids were formed between species from different sections and subgenera, but not with species from the related genera Angophora or Eucalyptus. Reproductive isolation between the interspecific Corymbia hybrid crosses was controlled by early- and late-acting pre-zygotic isolating barriers, with reproductive success generally decreasing with increasing taxonomic distance between parent species. These findings support the monophyly of Corymbia and the close relationships of infrageneric clades. The hybridizing propensity of Corymbia species provides opportunities for breeding but suggests risks of environmental gene flow. © The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Resumo:
The two rust fungi, Ravenelia acaciae-arabicae and R. evansii, were both found on Acacia nilotica subsp. indica in southern (Tamil Nadu) and northern (Gujarat) India. R. acaciae-arabicae has been often incorrectly synonymised with R. evansii, although each has distinctive urediniospores, viz. echinulate in R. acaciae-arabicae and verruculose in R. evansii. Both species are re-described and illustrated from fresh specimens collected in India. Herbarium specimens of R. evansii from South Africa, including the holotype, were also examined. The difficulty in connecting different anamorphic spore stages to either of these teleomorphic rusts is highlighted by the presence of similar aecidia on plants of A. robusta infected with R. evansii in South Africa and on A. nilotica subsp. indica infected with R. acaciae-arabicae in India. It is not known whether these aecidial rusts represent the same species, nor is it known if they represent an aecidial stage of either R. acaciae-arabicae, R. evansii or other rusts.
Resumo:
Alternaria leaf blotch and fruit spot caused by Alternaria spp. cause annual losses to the Australian apple industry. Control options are limited, mainly due to a lack of understanding of the disease cycle. Therefore, this study aimed to determine potential sources of Alternaria spp. inoculum in the orchard and examine their relative contribution throughout the production season. Leaf residue from the orchard floor, canopy leaves, twigs and buds were collected monthly from three apple orchards for two years and examined for the number of spores on their surface. In addition, the effects of climatic factors on spore production dynamics in each plant part were examined. Although all four plant parts tested contributed to the Alternaria inoculum in the orchard, significant higher numbers of spores were obtained from leaf residue than the other plant parts supporting the hypothesis that overwintering of Alternaria spp. occurred mainly in leaf residue and minimally on twigs and buds. The most significant period of spore production on leaf residue occurred from dormancy until bloom and on canopy leaves and twigs during the fruit growth stage. Temperature was the single most significant factor influencing the amount of Alternaria inoculum and rainfall and relative humidity showed strong associations with temperature influencing the spore production dynamics in Australian orchards. The practical implications of this study include the eradication of leaf residue from the orchard floor and sanitation of the canopy after harvest to remove residual spores from the trees.
Resumo:
Pimelea trichostachya Lindl., P. simplex F.Muell. and P. elongata Threlfall frequently cause pimelea poisoning of cattle. Fresh seeds of these species, belonging to sect. Epallage (Endl.) Benth. of Pimelea Gaertn. (Thymelaeaceae) are strongly dormant for years when in laboratory storage. Common methods of stimulating germination, such as scarification, dry heat and cold stratification, did not remove much of the dormancy. ‘Smoke water’ stimulated some germination but its effect was unpredictable and many seedlings then grew aberrantly. Exposure of imbibed seeds to gibberellic acid greatly and reliably improved the germination of all three species. However, the manner of application and the concentration of gibberellic acid used had to be appropriate or many young seedlings grew abnormally or died suddenly, limiting successful plant establishment rates. The dormancy type involved is non-deep Type 2 physiological. Ten days of good moisture, in addition to gibberellic acid exposure, is required before appreciable laboratory germination occurs at optimal temperatures. Thus, the mechanism by which gibberellic acid stimulates good germination does not appear to be the same as that which primes seeds for the rapid and prolific germination often seen under natural conditions in arid Australia. Seeds of P. simplex subsp. continua (J.M.Black) Threlfall proved most difficult to germinate and those of P. elongata the easiest.
Resumo:
Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich beta- and gamma-kafirins may limit enzymatic access to internally positioned alpha-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in beta-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
Parthenium (Parthenium hysterophorus L.) is one of the most aggressive herbaceous weeds of the Asteraceae family. It is widely distributed, almost across the world and has become the most important invasive weed. Comprehensive information on interference and control of this devastating species is required to facilitate better management decisions. A broad review on the interference and management of this weed is presented here. Inspite of its non-tropical origin, parthenium grows quite successfully under a wide range of environmental conditions. It is spreading rapidly in Australia, Western Africa, Asia, and Caribbean countries, and has become a serious weed of pastures, wastelands, roadsides, railwaysides, water courses, and agricultural crops. The infestations of parthenium have been reported to reduce grain and forage yields by 40–90%. The spread of parthenium has been attributed to its allelopathic activity, strong competitiveness for soil moisture and nutrients, and its capability to exploit natural biodiversity. Allelochemicals released from parthenium has been reported to decrease germination and growth of agronomic crops, vegetables, trees, and many other weed species. Growth promoting effects of parthenium extracts at low concentrations have also been reported in certain crops. Many pre- and post-emergence herbicides have been evaluated for the control of parthenium in cropped and non-cropped areas. The most effective herbicides are clomazone, metribuzin, atrazine, glyphosate, metsulfuron methyl, butachlor, bentazone, dicamba, and metsulfuron methyl. Extracts, residues, and essential oils of many allelopathic herbs (Cassia, Amaranthus, and Xanthium species), grasses (Imperata and Desmostachya species), and trees (Eucalyptus, Azadirachta, Mangifera species, etc.) have demonstrated inhibitory activities on seed germination and seedling growth of parthenium. Metabolites of several fungi, e.g., Fusarium oxysporun and Fusarium monilifonne, exhibit bioherbicidal activity against seeds and seedlings of this weed. Intercropping, displacement by competitive plant species like Cassia species, bisset bluegrass, florgen blugress, buffelgrass, along with the use of biological control agents like Mexican beetle, seed-feeding and stem-boring weevils, stem-galling and leaf-mining moth, and sap-feeding plant hopper, have been reported as possible strategies for the management of parthenium. An appropriate integration of these approaches could help minimize spread of parthenium and provide sustainable weed management with reduced environmental concerns.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.
Resumo:
Minimizing fungal infection is essential to the control of mycotoxin contamination of foods and feeds but many potential control methods are not without their own safety concerns for the consumers. Photodynamic inactivation is a novel light-based approach which offers a promising alternative to conventional methods for the control of mycotoxigenic fungi. This study describes the use of curcumin to inactivate spores of Aspergillus flavus, one of the major aflatoxin producing fungi in foods and feeds. Curcumin is a natural polyphenolic compound from the spice turmeric (Curcuma longa). In this study the plant has shown to be an effective photosensitiser when combined with visible light (420 nm). The experiment was conducted in in vitro and in vivo where A. flavus spores were treated with different photosensitiser concentration and light dose both in buffer solution and on maize kernels. Comparison of fungal load from treated and untreated samples was determined, and reductions of fungal spore counts of up to 3 log CFU ml−1 in suspension and 2 log CFU g−1 in maize kernels were obtained using optimal dye concentrations and light dose combinations. The results in this study indicate that curcumin-mediated photosensitization is a potentially effective method to decontaminate A. flavus spores in foods and feeds.
Resumo:
Heat stress can cause sterility in sorghum and the anticipated increased frequency of high temperature events implies increasing risk to sorghum productivity in Australia. Here we summarise our research on specific varietal attributes associated with heat stress tolerance in sorghum and evaluate how they might affect yield outcomes in production environments by a crop simulation analysis. We have recently conducted a range of controlled environment and field experiments to study the physiology and genetics of high temperature effects on growth and development of sorghum. Sorghum seed set was reduced by high temperature effects (>36-38oC) on pollen germination around flowering, but genotypes differed in their tolerance to high temperature stress. Effects were quantified in a manner that enabled their incorporation into the APSIM sorghum crop model. Simulation analysis indicated that risk of high temperature damage and yield loss depended on sowing date, and variety. While climate trends will exacerbate high temperature effects, avoidance by crop management and genetic tolerance seems possible.
Resumo:
Endoraecium is a genus of rust fungi that infects several species of Acacia in Australia, South-East Asia and Hawaii. This study investigated the systematics of Endoraecium from 55 specimens in Australia based on a combined morphological and molecular approach. Phylogenetic analyses were conducted on partitioned datasets of loci from ribosomal and mitochondrial DNA. The recovered molecular phylogeny supported a recently published taxonomy based on morphology and host range that divided Endoraecium digitatum into five species. Spore morphology is synapomorphic and there is evidence Endoraecium co-evolved with its Acacia hosts. The broad host ranges of E. digitatum, E. parvum, E. phyllodiorum and E. violae-faustiae are revised in light of this study, and nine new species of Endoraecium are described from Australia based on host taxonomy, morphology and phylogenetic concordance.
Resumo:
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage impacting more the higher the SF concentration. SF had little to no effects on grain test weight, 1000 grain weight, hardness, protein content, semolina ash content and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable while other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour-commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production but for the production of semolina, pasta and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat.