147 resultados para QUALITY TRAITS
Resumo:
Barley (Hordeum vulgare) genotypes were sequenced for polymorphism in the hardness genes, these being the three hordoindoline (hin a, hin b1 and hin b2) genes. The variation in haplotype was determined by sequencing for single nucleotide polymorphisms (SNPs). Polymorphism between each gene was then compared to grain hardness (three methods), malt quality characteristics (hot water extract and friability) and cattle feed quality. Two haplotypes were found in a set of forty barley genotypes. For hin a, two alleles were present, namely hin a1 and hin a2. However, there was no specific hin a allele that was associated with grain hardness, malt and feed quality. Barley has two hin b genes, namely hin b1 and hin b2, and the genotypes tested here had one of two alleles for each gene. However, there were no obvious effects on hardness or quality from either of these hin b alleles. Unlike wheat, where a clear relationship has been demonstrated between a number of SNPs in the wheat hardness genes and quality (soft or hard wheat), there was no such relationship for barley. Despite the wide range in hardness, malt and feed quality, there were only two haplotypes for each of the hin a, hin b1 and hin b2 genes and there was no clear relationship between grain hardness, malt or feed quality. The genotypes used in this study demonstrated that there was a low level of polymorphism in hardness genes in current commercial varieties as well as breeding lines and these polymorphisms had no impact on quality.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.
Resumo:
Leaf carbon (C) content, leaf nitrogen (N) content, and C:N ratio are especially useful for understanding plant-herbivore interactions and may be important in developing control methods for the invasive riparian plant Arundo donax L. We measured C content, N content, C:N ratio, and chlorophyll index (SPAD 502 reading) for 768 leaves from A. donax collected over a five year period at several locations in California, Nevada, and Texas. Leaf N was more variable than leaf C, and thus we developed a linear regression equation for estimating A. donax leaf N from the leaf chlorophyll index (SPAD reading). When applied to two independent data sets, the equation (leaf N content % = -0.63 + 0.08 x SPAD) produced realistic estimates that matched seasonal and spatial trends reported from a natural A. donax population. Used in conjunction with the handheld SPAD 502 meter, the equation provides a rapid, non-destructive method for estimating A. donax leaf quality.
Resumo:
Background: Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. Results: The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Conclusion: Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.
Resumo:
Three drafts of Bos indicus cross steers (initially 178-216 kg) grazed Leucaena-grass pasture [Leucaena leucocephala subspecies glabrata cv. Cunningham with green panic (Panicum maximum cv. trichoglume)] from late winter through to autumn during three consecutive years in the Burnett region of south-east Queensland. Measured daily weight gain (DWGActual) of the steers was generally 0.7-1.1 kg/day during the summer months. Estimated intakes of metabolisable energy and dry matter (DM) were calculated from feeding standards as the intakes required by the steers to grow at the DWGActual. Diet attributes were predicted from near infrared reflectance spectroscopy spectra of faeces (F.NIRS) using established calibration equations appropriate for northern Australian forages. Inclusion of some additional reference samples from cattle consuming Leucaena diets into F.NIRS calibrations based on grass and herbaceous legume-grass pastures improved prediction of the proportion of Leucaena in the diet. Mahalanobis distance values supported the hypothesis that the F.NIRS predictions of diet crude protein concentration and DM digestibility (DMD) were acceptable. F.NIRS indicated that the percentage of Leucaena in the diet varied widely (10-99%). Diet crude protein concentration and DMD were usually high, averaging 12.4 and 62%, respectively, and were related asymptotically to the percentage of Leucaena in the diet (R2 = 0.48 and 0.33, respectively). F.NIRS calibrations for DWG were not satisfactory to predict this variable from an individual faecal sample since the s.e. of prediction were 0.33-0.40 kg/day. Cumulative steer liveweight (LW) predicted from F.NIRS DWG calibrations, which had been previously developed with tropical grass and grass-herbaceous legume pastures, greatly overestimated the measured steer LW; therefore, these calibrations were not useful. Cumulative steer LW predicted from a modified F.NIRS DWG calibration, which included data from the present study, was strongly correlated (R2 = 0.95) with steer LW but overestimated LW by 19-31 kg after 8 months. Additional reference data are needed to develop robust F.NIRS calibrations to encompass the diversity of Leucaena pastures of northern Australia. In conclusion, the experiment demonstrated that F.NIRS could improve understanding of diet quality and nutrient intake of cattle grazing Leucaena-grass pasture, and the relationships between nutrient supply and cattle growth.
Resumo:
Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6-28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.
Using morphological traits to identify persistent lucernes for dryland agriculture in NSW, Australia
Resumo:
This paper reports on several studies conducted to better understand the variability between lucerne cultivars and lines, and use this to predict persistence in dryland grazing pastures in eastern Australia. Morphological traits of 20 cultivars/lines were measured in irrigated and dryland spaced plant experiments. Studies were also conducted to describe variation among lucernes in their utilisation of starch and responses to water deficit, pests and diseases. Multiple regression analyses were used to develop simple models where the measured traits could be used to predict persistence of lucerne lines in dryland evaluation experiments. Although there was significant variation among cultivars/lines in most measured traits, no single trait reliably predicted persistence of cultivars/lines in dryland evaluation experiments. However, variation in persistence at both sites could be explained by models developed by multiple regression using differences in the mean lengths of the longest stems at 10% flower in summer and winter. Persistent lucernes were those that had relatively long stems in summer and short stems in winter. Water use efficiencies, starch utilisation patterns and resistances to pests and diseases of different lucernes provided some improvement to this simple model, but these improvements were not consistent.
Resumo:
The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm. Results: A genotyping array was developed representing approximately 12,000 genomic clones using PstI+BanII complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. Conclusion: We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.
Resumo:
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
Resumo:
Better understanding of root system structure and function is critical to crop improvement in water-limited environments. The aims of this study were to examine root system characteristics of two wheat genotypes contrasting in tolerance to water limitation and to assess the functional implications on adaptation to water-limited environments of any differences found. The drought tolerant barley variety, Mackay, was also included to allow inter-species comparison. Single plants were grown in large, soil-filled root-observation chambers. Root growth was monitored by digital imaging and water extraction was measured. Root architecture differed markedly among the genotypes. The drought-tolerant wheat (cv. SeriM82) had a compact root system, while roots of barley cv. Mackay occupied the largest soil volume. Relative to the standard wheat variety (Hartog), SeriM82 had a more uniform rooting pattern and greater root length at depth. Despite the more compact root architecture of SeriM82, total water extracted did not differ between wheat genotypes. To quantify the value of these adaptive traits, a simulation analysis was conducted with the cropping system model APSIM, for a wide range of environments in southern Queensland, Australia. The analysis indicated a mean relative yield benefit of 14.5% in water-deficit seasons. Each additional millimetre of water extracted during grain filling generated an extra 55 kg ha-1 of grain yield. The functional implications of root traits on temporal patterns and total amount of water capture, and their importance in crop adaptation to specific water-limited environments, are discussed.
Resumo:
Inconsistent internal fruit quality in Hass avocados affects consumer confidence. To determine the influence of individual trees on fruit quality, Hass avocado fruit were harvested from adjacent trees of similar external appearance in 3 commercial orchards in 1998 and 1 orchard in 1999. The trees in each orchard were grown with similar commercial practices and in similar soil types. Within each location, there were significant (P<0.05) differences in the mean ripe fruit quality between trees with respect to fruit body rot severity (mainly anthracnose) with and without cold storage, internal disorders severity due to diffuse discolouration and vascular browning (after cold storage), days to ripen, percentage dry matter, and the percentage of the skin area with purple-black colour when ripe. These effects were also noted in the same orchard in 1999. There were significant (P<0.05) differences in fruit flesh calcium, magnesium, potassium, boron and zinc concentrations between trees. Significant (P<0.05) correlations were observed between average fruit mineral concentrations in each tree (particularly calcium, magnesium and potassium) and body rot severity, percentage dry matter and fruit mass. There was little conclusive evidence that characteristics such as the growth of the non-suberised roots or the degree of scion under- or overgrowth was involved in these tree effects; however, differences between trees with respect to other rootstock characteristics may be involved. The inconsistency of the correlations across sites and years suggested that other factors apart from tree influences could also affect the relationship between fruit minerals and fruit quality.
Resumo:
We have mapped and identified DNA markers linked to morphology, yield, and yield components of lucerne, using a backcross population derived from winter-active parents. The high-yielding and recurrent parent, D, produced individual markers that accounted for up to 18% of total yield over 6 harvests, at Gatton, south-eastern Queensland. The same marker, AC/TT8, was consistently identified at each individual harvest, and in individual harvests accounted for up to 26% of the phenotypic variation for yield. This marker was located in linkage group 2 of the D map, and several other markers positively associated with yield were consistently identified in this linkage group. Similarly, markers negatively associated with yield were consistently identified in the W116 map, W116 being the low-yielding parent. Highly significant positive correlations were observed between total yield and yield for harvests 1-6, and between total yield and stem length, tiller number, leaf yield/plant, leaf yield/5 stems, stem yield/plant, and stem yield/5 stems. Highly significant QTL were located for all these characters as well as for leaf shape and pubescence.
Resumo:
Deficiencies in sardine post-harvest handling methods were seen as major impediments to development of a value-adding sector supplying Australian bait and human consumption markets. Factors affecting sardine deterioration rates in the immediate post-harvest period were investigated and recommendations made for alternative handling procedures to optimise sardine quality. Net to factory sampling showed that post-mortem autolysis was probably caused by digestive enzyme activity contributing to the observed temporal increase in sardine Quality Index. Belly burst was not an issue. Sardine quality could be maintained by reducing tank loading, and rapid temperature reduction using dedicated, on-board value-adding tanks. Fish should be iced between the jetty and the processing factory, and transport bins chilled using an efficient cooling medium such as flow ice.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.