116 resultados para Grasses.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project assembled basic information to allow effective management and manipulation of native pastures in the southern Maranoa region of Queensland. This involved a range of plant studies, including a grazing trial, to quantify the costs of poor pasture composition. While the results focus on perennial grasses, we recognise the important dietary role played by broad-leaved herbs. The plant manipulation studies focussed on ways to change the proportions of plants in a grazed pasture, eg. by recruitment or accelerated morbidity of existing plants. As most perennial grasses have a wide range of potential flowering times outside of mid-winter, rainfall exerts the major influence on flowering and seedset; exceptions are black speargrass, rough speargrass and golden beardgrass that flower only for a restricted period each year. This simplifies potential control options through reducing seedset. Data from field growth studies of four pasture grasses have been used to refine the State's pasture production model GRASP. We also provide detailed data on the forage value of many native species at different growth stages. Wiregrass dominance in pastures on a sandy red earth reduced wool value by only 5-10% at Roma in 1994/95 when winters were very dry and grass seed problems were minimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a study that included C-4 tropical grasses, C-3 temperate grasses and C-3 pasture legumes, in vitro dry matter digestibility of extrusa, measured as in vitro dry matter loss (IVDML) during incubation, compared with that of the forage consumed, was greater for grass extrusa but not for legume extrusa. The increase in digestibility was not caused by mastication or by the freezing of extrusa samples during storage but by the action of saliva. Comparable increases in IVDML were achieved merely by mixing bovine saliva with ground forage samples. Differences were greater than could be explained by increases due to completely digestible salivary DM. There was no significant difference between animals in relation to the saliva effect on IVDML and, except for some minor differences, similar saliva effects on IVDML were measured using either the pepsin-cellulase or rumen fluid-pepsin in vitro techniques. For both C-4 and C-3 grasses the magnitude of the differences were inversely related to IVDML of the feed and there was little or no difference between extrusa and feed at high digestibilities (>70%) whereas differences of more than 10 percentage units were measured on low quality grass forages. The data did not suggest that the extrusa or saliva effect on digestibility was different for C-3 grasses than for C-4 grasses but data on C-3 grasses were limited to few species and to high digestibility samples. For legume forages there was no saliva effect when the pepsin-cellulase method was used but there was a small but significant positive effect using the rumen fluid-pepsin method. It was concluded that when samples of extrusa are analysed using in vitro techniques, predicted in vivo digestibility of the feed consumed will often be overestimated, especially for low quality grass diets. The implications of overestimating in vivo digestibility and suggestions for overcoming such errors are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assessment of the relative influences of management and environment on the composition of floodplain grasslands of north-western New South Wales was made using a regional vegetation survey sampling a range of land tenures (e. g. private property, travelling stock routes and nature reserves). A total of 364 taxa belonging to 55 different plant families was recorded. Partitioning of variance with redundancy analysis determined that environmental variables accounted for a greater proportion (61.3%) of the explained variance in species composition than disturbance-related variables (37.6%). Soil type (and fertility), sampling time and rainfall had a strong influence on species composition and there were also east-west variations in composition across the region. Of the disturbance-related variables, cultivation, stocking rate and flooding frequency were all influential. Total, native, forb, shrub and subshrub richness were positively correlated with increasing time since cultivation. Flood frequency was positively correlated with graminoid species richness and was negatively correlated with total and forb species richness. Site species richness was also influenced by environmental variables (e. g. soil type and rainfall). Despite the resilience of these grasslands, some forms of severe disturbance (e. g. several years of cultivation) can result in removal of some dominant perennial grasses (e. g. Astrebla spp.) and an increase in disturbance specialists. A simple heuristic transitional model is proposed that has conceptual thresholds for plant biodiversity status. This knowledge representation may be used to assist in the management of these grasslands by defining four broad levels of community richness and the drivers that change this status.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recognition that non-native plant species represent a substantial risk to natural systems, there is currently no compilation of weeds that impact on the biodiversity of the rangelands within Australia. Using published and expert knowledge, this paper presents a list of 622 non-native naturalised species known to occur within the rangelands. Of these, 160 species (26%) are considered a current threat to rangeland biodiversity. Most of these plant species have been deliberately introduced for forage or other commercial use (e.g. nursery trade). Among growth forms, shrubs and perennial grasses comprise over 50% of species that pose the greatest risk to rangeland biodiversity. We identify regions within the rangelands containing both high biodiversity values and a high proportion of weeds and recommend these areas as priorities for weed management. Finally, we examine the resources available for weed detection and identification since detecting weeds in the early stages of invasion is the most cost effective method of reducing further impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present review identifies various constraints relating to poor adoption of ley-pastures in south-west Queensland, and suggests changes in research, development and extension efforts for improved adoption. The constraints include biophysical, economic and social constraints. In terms of biophysical constraints, first, shallower soil profiles with subsoil constraints (salt and sodicity), unpredictable rainfall, drier conditions with higher soil temperature and evaporative demand in summer, and frost and subzero temperature in winter, frequently result in a failure of established, or establishing, pastures. Second, there are limited options for legumes in a ley-pasture, with the legumes currently being mostly winter-active legumes such as lucerne and medics. Winter-active legumes are ineffective in improving soil conditions in a region with summer-dominant rainfall. Third, most grain growers are reluctant to include grasses in their ley-pasture mix, which can be uneconomical for various reasons, including nitrogen immobilisation, carryover of cereal diseases and depressed yields of the following cereal crops. Fourth, a severe depletion of soil water following perennial ley-pastures (grass + legumes or lucerne) can reduce the yields of subsequent crops for several seasons, and the practice of longer fallows to increase soil water storage may be uneconomical and damaging to the environment. Economic assessments of integrating medium- to long-term ley-pastures into cropping regions are generally less attractive because of reduced capital flow, increased capital investment, economic loss associated with establishment and termination phases of ley-pastures, and lost opportunities for cropping in a favourable season. Income from livestock on ley-pastures and soil productivity gains to subsequent crops in rotation may not be comparable to cropping when grain prices are high. However, the economic benefits of ley-pastures may be underestimated, because of unaccounted environmental benefits such as enhanced water use, and reduced soil erosion from summer-dominant rainfall, and therefore, this requires further investigation. In terms of social constraints, the risk of poor and unreliable establishment and persistence, uncertainties in economic and environmental benefits, the complicated process of changing from crop to ley-pastures and vice versa, and the additional labour and management requirements of livestock, present growers socially unattractive and complex decision-making processes for considering adoption of an existing medium- to long-term ley-pasture technology. It is essential that research, development and extension efforts should consider that new ley-pasture options, such as incorporation of a short-term summer forage legume, need to be less risky in establishment, productive in a region with prevailing biophysical constraints, economically viable, less complex and highly flexible in the change-over processes, and socially attractive to growers for adoption in south-west Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (-9.44 ± 0.80 g and -23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects on yield, botanical composition and persistence, of using a variable defoliation schedule as a means of optimising the quality of the tall fescue component of simple and complex temperate pasture mixtures in a subtropical environment was studied in a small plot cutting experiment at Gatton Research Station in south-east Queensland. A management schedule of 2-, 3- and 4-weekly defoliations in summer, autumn and spring and winter, respectively, was imposed on 5 temperate pasture mixtures: 2 simple mixtures including tall fescue (Festuca arundinacea) and white clover (Trifolium repens); 2 mixtures including perennial ryegrass (Lolium perenne), tall fescue and white clover; and a complex mixture, which included perennial ryegrass, tall fescue, white, red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus). Yield from the variable cutting schedule was 9% less than with a standard 4-weekly defoliation. This loss resulted from reductions in both the clover component (13%) and cumulative grass yield (6%). There was no interaction between cutting schedule and sowing mixture, with simple and complex sowing mixtures reacting in a similar manner to both cutting schedules. The experiment also demonstrated that, in complex mixtures, the cutting schedules used failed to give balanced production from all sown components. This was especially true of the grass and white clover components of the complex mixture, as chicory and Persian clover components dominated the mixtures, particularly in the first year. Quality measurements (made only in the final summer) suggested that variable management had achieved a quality improvement with increases in yields of digestible crude protein (19%) and digestible dry matter (9%) of the total forage produced in early summer. The improvements in the yields of digestible crude protein and digestible dry matter of the tall fescue component in late summer were even greater (28 and 19%, respectively). While advantages at other times of the year were expected to be smaller, the data suggested that the small loss in total yield was likely to be offset by increases in digestibility of available forage for grazing stock, especially in the critical summer period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the subtropics of Australia, the ryegrass component of irrigated perennial ryegrass (Lolium perenne) - white clover (Trifolium repens) pastures declines by approximately 40% in the summer following establishment, being replaced by summer-active C4 grasses. Tall fescue (Festuca arundinacea) is more persistent than perennial ryegrass and might resist this invasion, although tall fescue does not compete vigorously as a seedling. This series of experiments investigated the influence of ryegrass and tall fescue genotype, sowing time and sowing mixture as a means of improving tall fescue establishment and the productivity and persistence of tall fescue, ryegrass and white clover-based mixtures in a subtropical environment. Tall fescue frequency at the end of the establishment year decreased as the number of companion species sown in the mixture increased. Neither sowing mixture combinations nor sowing rates influenced overall pasture yield (of around 14 t/ha) in the establishment year but had a significant effect on botanical composition and component yields. Perennial ryegrass was less competitive than short-rotation ryegrass, increasing first-year yields of tall fescue by 40% in one experiment and by 10% in another but total yield was unaffected. The higher establishment-year yield (3.5 t/ha) allowed Dovey tall fescue to compete more successfully with the remaining pasture components than Vulcan (1.4 t/ha). Sowing 2 ryegrass cultivars in the mixture reduced tall fescue yields by 30% compared with a single ryegrass (1.6 t/ha), although tall fescue alone achieved higher yields (7.1 t/ha). Component sowing rate had little influence on composition or yield. Oversowing the ryegrass component into a 6-week-old sward of tall fescue and white clover improved tall fescue, white clover and overall yields in the establishment year by 83, 17 and 11%, respectively, but reduced ryegrass yields by 40%. The inclusion of red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus) increased first-year yields by 25% but suppressed perennial grass and clover components. Yields were generally maintained at around 12 t/ha/yr in the second and third years, with tall fescue becoming dominant in all 3 experiments. The lower tall fescue seeding rate used in the first experiment resulted in tall fescue dominance in the second year following establishment, whereas in Experiments 2 and 3 dominance occurred by the end of the first year. Invasion by the C4 grasses was relatively minor (<10%) even in the third year. As ryegrass plants died, tall fescue and, to a lesser extent, white clover increased as a proportion of the total sward. Treatment effects continued into the second, but rarely the third, year and mostly affected the yield of one of the components rather than total cumulative yield. Once tall fescue became dominant, it was difficult to re-introduce other pasture components, even following removal of foliage and moderate renovation. Severe renovation (reducing the tall fescue population by at least 30%) seems a possible option for redressing this situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diet selected in autumn by steers fistulated at the oesophageous was studied in a subset of treatments in an extensive grazing study conducted in a Heteropogon contortus pasture in central Queensland between 1988 and 2001. These treatments were a factorial array of three stocking rates (4, 3 and 2 ha/steer) and three pasture types (native pasture, legume-oversown native pasture and animal diet supplement/spring-burning native pasture). Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 30 to 61%. Steers consistently selected H. contortus with levels decreasing from 47 to 18% of the diet as stocking rate increased from 4 ha/steer to 2 ha/steer. Stylosanthes scabra cv. Seca was always selected in legume-oversown pastures with diet composition varying from 35 to 66% despite its plant density increasing from 7 to 65 plants/m(2) and pasture composition from 20 to 50%. Steers also selected a diet containing Chrysopogon fallax, forbs and sedges in higher proportions than they were present in the pasture. Greater availability of the intermediate grasses Chloris divaricata and Eragrostis spp. was associated with increased stocking rates. Bothriochloa bladhii was seldom selected in the diet, especially when other palatable species were present in the pasture, despite B. bladhii often being the major contributor to total pasture yield. It was concluded that a stocking rate of 4 ha/steer will maintain the availability of H. contortus in the pasture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

‘KP4’ is based on selected F4 progeny of 8 plants showing a low, creeping, tight-matted, late flowering growth habit. The original parental breeding population was selected from among 1600 diploid Rhodes grass seedlings grown as spaced plants; seven of the selected parental plants were from ‘Katambora’ and the eighth (which did not contribute as a maternal parent beyond the F1 generation) was a seedling from an unreleased accession. Four (4) cycles of mass selection were conducted, in which the selected plants from the previous generation were allowed to inter-cross in isolation in the field, and the resultant progeny later grown as spaced plants in the field for the next cycle of selection. Selection was for the following attributes: prostrate creeping early growth habit with short stolon internodes resulting in a dense stolon mat; leafy appearance; fine leaf and stem; and late flowering (i.e. a long period of vegetative growth before flowering). ‘KP4’ is a synthetic Rhodes grass cultivar multiplied from the selected fourth-generation plants produced by this line of breeding. Breeder: Donald S. Loch, Cleveland, QLD. PBR Certificate Number 3661, Application Number 2006/189, granted 16 December 2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperate species and tropical crop silage are the basis for forage production for the dairy industry in the Australian subtropics. Irrigation is the key resource needed for production, with little survival of temperate species under rain-grown conditions except for lucerne. Annual ryegrass (Lolium multiflorum), fertilised with either inorganic nitrogen or grown with clovers, is the main cool season forage for the dairy industry. It is sown into fully prepared seedbeds, oversown into tropical grasses, especially kikuyu (Pennisetum clandestinum) or sown after mulching. There has been a continual improvement in the performance of annual and hybrid ryegrass cultivars over the last 25 years. In small plot, cutting experiments, yields of annual ryegrass typically range from 15 to 21 t DM/ha, with equivalent on-farm yields of 7 to 14 t DM/ha of utilised material. Rust (Puccinia coronata) remains the major concern although resistance is more stable than in oats. There have also been major improvements in the performance of perennial ryegrass (L. perenne) cultivars although their persistence under grazing is insufficient to make them a reliable forage source for the subtropics. On the other hand, tall fescue (Festuca arundinacea) and prairie grass (Bromus willdenowii) cultivars perform well under cutting and grazing, although farmer resistance to the use of tall fescue is strong. White clover (Trifolium repens) is a reliable and persistent performer although disease usually reduces its performance in the third year after sowing. Persian (Shaftal) annual clover (T. resupinatum) gives good winter production but the performance of berseem clover (T. alexandrinum) is less reliable and the sub clovers (T. subterraneum) are generally not suited to clay soils of neutral to alkaline pH. Lucerne (Medicago sativa), either as a pure stand or in mixtures, is a high producing legume under both irrigation and natural rainfall. Understanding the importance of leaf and crown diseases, and the development of resistant cultivars, have been the reasons for its reliability. Insects on temperate species are not as serious a problem in the subtropics as in New Zealand (NZ). Fungal and viral diseases, on the other hand, cause many problems and forage performance would benefit from more research into resistance.