100 resultados para Grapefruit seeds
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
Resins are a critical resource for stingless bees and resin-collecting bees act as seed dispersers in tropical plants. We describe the diurnal foraging patterns of colonies of Trigona sapiens and T. hockingsi on resin and pollen. We also document patterns of waste removal and seed dispersal of Corymbia torelliana. At most, only 10% of foragers collected resin or dispersed seed. Nevertheless, bees dispersed 1-3 seeds outside the nest per 5 minutes, and 38-114 seeds per day for each nest. The proportion of returning bees carrying pollen was highest in the morning for both species. The proportion of foragers returning with resin loads showed no significant diurnal variation in any season. Waste removal activity peaked in the afternoon for T. sapiens and in the morning for T. hockingsi. Seed removal peaked in the afternoon in one year only for T. sapiens. Bees dispersed thousands of seeds of C. torelliana over the season even though only a small proportion of the colony was engaged in seed transport.
Resumo:
The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles from terminal alkenyl glucosinolates and, as recent evidence suggests, simple nitriles at the expense of isothiocyanates. From a human health perspective isothiocyanates are the most important because they are major inducers of carcinogen-detoxifying enzymes. Fe2+ is an essential factor in ESP activity, although several recent studies have highlighted discrepancies in the understanding of the ESP-iron interaction. To investigate further the role iron species play in regulating ESP activity, four ESP-containing seedpowders were analyzed for ESP and myrosinase activities, endogenous iron content, and glucosinolate degradation products after the addition of iron species, specific chelators, and reducing agents. For the first time this paper shows the effect of these additions on the hydrolysis of individual glucosinolates that constitute the total pool. Aged seeds and 3-day seedlings were also tested to investigate the effects of seed storage and early plant development on iron levels and ESP activity. The four ESP-containing plant systems tested gave two distinctive responses, thus providing strong evidence that ESPs vary markedly in their Fe2+ requirement for activity. The results also indicated that reduction of ferric to ferrous iron drives variations in ESP activity during early plant development. The reverse oxidation reaction provided a convincing explanation for the loss of ESP activity during seed storage. Aged seeds produced seedlings with substantially lower ESP activity, and there was a concomitant loss in germination rate. It was concluded that manipulation of endogenous iron levels of ESP-containing plants could increase the conversion of glucosinolates to isothiocyanates and enhance potential health benefits.
Resumo:
Sonchus oleraceus (common sowthistle) is a dominant weed and has increased in prevalence in conservation cropping systems of the subtropical grain region of Australia. Four experiments were undertaken to define the environmental factors that favor its germination, emergence, and seed persistence. Seeds were germinated at constant temperatures between 5 and 35C and water potentials between 0 and -1.4 MPa. The maximum germination rate of 86-100% occurred at 0 and -0.2 MPa, irrespective of the temperature when exposed to light (12 h photoperiod light/dark), but the germination rate was reduced by 72% without light. At water potentials of -0.6 to -0.8 MPa, the germination rate was reduced substantially by higher temperatures; no seed germinated at a water potential >-1.0 MPa. Emergence and seed persistence were measured over 30 months following seed burial at 0 (surface), 1, 2, 5, and 10 cm depths in large pots that were buried in a south-eastern Queensland field. Seedlings emerged readily from the surface and 1 cm depth, with no emergence from below the 2 cm depth. The seedlings emerged during any season following rain but, predominantly, within 6 months of planting. Seed persistence was short-term on the soil surface, with 2% of seeds remaining after 6 months, but it increased with the burial depth, with 12% remaining after 30 months at 10 cm. Thus, a minimal seed burial depth with reduced tillage and increased surface soil water with stubble retention has favored the proliferation of this weed in any season in a subtropical environment. However, diligent management without seed replenishment will greatly reduce this weed problem within a short period.
Resumo:
Better understanding of seed-bank dynamics of Echinochloa colona, Urochloa panicoides and Hibiscus trionum, major crop weeds in sub-tropical Australia, was needed to improve weed control. Emergence patterns and seed persistence were investigated, with viable seeds sown at different depths in large in-ground pots. Seedlings of all species emerged between October and March when mean soil temperatures were 21-23C. However, E. colona emerged as a series of flushes predominantly in the first year, with most seedlings emerging from 0-2 cm. Urochloa panicoides emerged mostly as a single large flush in the first two years, with most seedlings emerging from 5 cm. Hibiscus trionum emerged as a series of flushes over three seasons, initially with majority from 5 cm and then 0-2 cm in the later seasons. Longevity of the grass seed was short, with <5% remaining after burial at 0-2 cm for 24 months. In contrast, 38% of H. trionum seeds remained viable after the same period. Persistence of all species increased significantly with burial depth. These data highlight that management strategies need to be tailored for each species, particularly relating to the need for monitoring, application times for control tactics, impact of tillage, and time needed to reduce the seed-bank to low numbers.
Resumo:
Seeds in the field experience wet-dry cycling that is akin to the well-studied commercial process of seed priming in which seeds are hydrated and then re-dried to standardise their germination characteristics. To investigate whether the persistence (defined as in situ longevity) and antioxidant capacity of seeds are influenced by wet-dry cycling, seeds of the global agronomic weed Avena sterilis ssp. ludoviciana were subjected to (1) controlled ageing at 60% relative humidity and 53.5°C for 31 days, (2) controlled ageing then priming, or (3) ageing in the field in three soils for 21 months. Changes in seed viability (total germination), mean germination time, seedling vigour (mean seedling length), and the concentrations of the glutathione (GSH) / glutathione disulphide (GSSG) redox couple were recorded over time. As controlled-aged seeds lost viability, GSH levels declined and the relative proportion of GSSG contributing to total glutathione increased, indicative of a failing antioxidant capacity. Subjecting seeds that were aged under controlled conditions to a wet-dry cycle (to −1 MPa) prevented viability loss and increased GSH levels. Field-aged seeds that underwent numerous wet-dry cycles due to natural rainfall maintained high viability and high GSH levels. Thus wet-dry cycles in the field may enhance seed longevity and persistence coincident with re-synthesis of protective compounds such as GSH.
Resumo:
Eucalyptus species, native to Australia, Indonesia, the Philippines, and New Guinea, are the most widely planted hardwood timber species in the world. The trees, moved around the globe as seeds, escaped the diverse community of herbivores found in their native range. However, a number of herbivore species from the native range of eucalypts have invaded many Eucalyptus-growing regions in North America, Europe, Africa, Asia, and South America in the last 30 years. In addition, there have been shifts of native species, particularly in Africa, Asia, and South America, onto Eucalyptus. There are risks that these species as well as generalist herbivores from other parts of the world will invade Australia and threaten the trees in their native range. The risk to Eucalyptus plantations in Australia is further compounded by planting commercially important species outside their endemic range and shifting of local herbivore populations onto new host trees. Understanding the mechanisms underlying host specificity of Australian insects can provide insight into patterns of host range expansion of both native and exotic insects.
Resumo:
The spotted gum species complex represents a group of four eucalypt hardwood taxa that have a native range that spans the east coast of Australia, with a morphological cline from Victoria to northern Queensland. Of this group, Corymbia citriodora subsp. variegata (CCV) is widespread in south-eastern Queensland and northern New South Wales. It is currently the most commonly harvested native hardwood in Queensland. However, little basic knowledge of the reproductive biology of the species is available to inform genetic improvement and resource management programmes. Here we take an integrative approach, using both field and molecular data, to identify ecological factors important to mating patterns in native populations of CCV. Field observation of pollinator visitation and flowering phenology of 20 trees showed that foraging behaviour of pollinator guilds varies depending on flowering phenology and canopy structure. A positive effect of tree mean flowering effort was found on insect visitation, while bat visitation was predicted by tree height and by the number of trees simultaneously bearing flowers. Moreover, introduced honeybees were observed frequently, performing 73% of detected flower visits. Conversely, nectar-feeding birds and mammals were observed sporadically with lorikeets and honeyeaters each contributing to 11% of visits. Fruit bats, represented solely by the grey-headed flying fox, performed less than 2% of visits. Genotyping at six microsatellite markers in 301 seeds from 17 families sampled from four of Queensland's native forests showed that CCV displays a mixed-mating system that is mostly outcrossing (tm = 0.899 ± 0.021). Preferential effective pollination from near-neighbours was detected by means of maximum-likelihood paternity analysis with up to 16% of reproduction events resulting from selfing. Forty to 48% of fertilising pollen was also carried from longer distance (>60 m). Marked differences in foraging behaviour and visitation frequency between observed pollinator guilds suggests that the observed dichotomy of effective pollen movement in spotted gums may be due to frequent visit from introduced honeybees favouring geitonogamy and sporadic visits from honeyeaters and fruit bats resulting in potential long-distance pollinations.
Resumo:
The pattern of growth and development of seed crops of stylo (Stylosanthes guyanensis) was derived from measurements made on experimental and commercial crops in north Queensland. The three cultivars Cook, Endeavour, and Schofield differed appreciably only in the timetable of their development. Each had distinct successive phases of vegetative and reproductive development culminating in total annual seed production of 700-800 kg ha-1 from a healthy closed canopy, the main recorded cause of reduced production being the disease Botrytis sp. In a healthy crop of Cook, the peak quantity of standing seed represented almost 90 per cent of the total accountable seed, and the rise to and decline from this peak proceeded at rates of the order of 3-4 per cent per day. It is deduced that, although there appears to be little potential for either increase in overall production or improvement in synchronization or retention characteristics beyond that currently attained by a closed canopy of healthy plants, there is scope for an increase in the efficiency of recovery of standing seed. Maximum recovery will be achieved through attention to choice of time of harvest, presentation of a minimum amount of extraneous vegetation to the harvester, and improvement in harvester separation.
Resumo:
The consequences of defoliation on seed production of stylo (Stylosanthes guyanensis) were examined in field experiments at Walkamin in north Queensland. The practical aim of defoliation is to present a level uncompacted crop canopy to the harvester without a reduction in the quantity of seed carried at harvest ripeness. It was concluded that the latest date at which defoliation is reasonably certain to achieve its objectives is about four weeks before first flower initiation. In north Queensland, this means late February for cvv. Cook and Endeavour and early April for cv. Schofield. The results suggest that development of the population of individual shoots must be synchronized to produce the highest peaks of standing seed; that this is best achieved by ensuring that a closed crop canopy with a ceiling shoot population exists at the time of first flower initiation; and that poorly synchronized shoot development is a consequence of defoliating too late and a cause of reduced seed production.
Resumo:
Strips within commercial crops of Stylosanthes guyanensis in the Mareeba district of north Queensland were sprayed with diquat 4, 6 and 10 days before harvest and compared with unsprayed strips. Pre-harvest desiccation made combine harvesting easier, but did not increase harvest yield. Where seed formation and maturation was still possible, desiccation prevented this without substantially increasing the loss of seed to the ground; increased harvest efficiency was thus offset by a diminished quantity of standing seed. However, where there was little or no further potential for seed development, diquat had virtually no effect on the quantity of standing seed or harvest efficiency. It was concluded that the results warranted neither recommendation nor further evaluation of preharvest desiccation of S. guyanensis seed crops.
Resumo:
Stylosanthes humilis swards grown at Brisbane in irrigated boxes were defoliated (about 60 per cent removal of tops) at floral initiation, first flower appearance, or advanced flowering stages ; seed yield was 45, 16, and 14 per cent respectively of seed yield in undefoliated swards. Decreased yields were primarily due to poor seed set of florets, were also associated with reduced inflorescence density and floret number per inflorescence, and occurred despite increases (in some defoliation treatments) in seed size, leaf growth rate, and differentiation of leaves and branches. Total seasonal plant growth was independent of defoliation treatment.
Resumo:
Liquid chromatography/mass spectrometry (MS)/MS was used to analyse toxins in P. trichostachia, P. simplex subsp. continua, P. simplex subsp. continua and P. elongata samples (flowers, seeds, branches, main stem, leaves and roots) collected from various locations in Queensland, Saskatchewan and New South Wales, Australia. Simplexin was the major analyte in all taxa, with varying minor levels of huratoxin. Simplexin levels in P. trichostachia and P. elongata were higher (580 and 540 mg/kg in flowering foliage, respectively) than in P. simplex (255 mg/kg). Levels of huratoxin were higher in P. simplex (relative to simplexin) than in P. trichostachia or P. elongata. P. simplex flower heads and roots contained similar simplexin levels, with very small amounts of toxins detected in branches, stems and leaves. In P. trichostachia, simplexin levels were high in flower heads but low in the the other plant parts. The simplexin levels in aerial parts were generally higher from the pre-flowering to the flowering stage, decreasing towards the post-flowering stage; similar trends were recorded for P.elongata samples collected from a site near Bollon and P. trichostachia samples collected from a site near Jericho (both sites in Queensland). The simplexin concentration in roots was much less variable. Flowers and seeds had much higher simplexin levels than the foliage. The breakdown of the toxin in litter was more rapid compared to seeds under the same weathering conditions. Unlike the results from the litter samples, no significant decrease occurred in seed samples after 18 months of exposure.
Resumo:
Australian native plant foods provide new and exciting eating experiences for consumers and have the potential to re-position ‘Australian cuisine’ as a contemporary food choice for consumers worldwide. The development of a common set of flavour and aroma descriptors and characteristics was identified as a key priority for the Australian native food industry. This research assists in the development and supply of product information to support market access and market growth for this emerging industry. This work was targeted so that a concise, consistent and accurate marketing message of the flavours of these ingredients could be delivered to customers. This report details the results of the development of the first ‘Australian native flavour wheel’ and sensory descriptions for sixteen of the key commercial native food species including fruits, berries, herbs, spices and seeds.
Resumo:
Screening new and existing breeding germplasm and cultivars for grain defect tolerance for breeding programs, evaluate new methods and technologies to screen more effectively for the barley grains defects - pre-harvest sprouting, blackpoint, kernel discolouration, and investigate genetic mechanisms involved in controlling barley grain defect tolerance.