168 resultados para Forensic entomology
Resumo:
Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.
Resumo:
The prioritisation of potential agents on the basis of likely efficacy is an important step in biological control because it can increase the probability of a successful biocontrol program, and reduce risks and costs. In this introductory paper we define success in biological control, review how agent selection has been approached historically, and outline the approach to agent selection that underpins the structure of this special issue on agent selection. Developing criteria by which to judge the success of a biocontrol agent (or program) provides the basis for agent selection decisions. Criteria will depend on the weed, on the ecological and management context in which that weed occurs, and on the negative impacts that biocontrol is seeking to redress. Predicting which potential agents are most likely to be successful poses enormous scientific challenges. 'Rules of thumb', 'scoring systems' and various conceptual and quantitative modelling approaches have been proposed to aid agent selection. However, most attempts have met with limited success due to the diversity and complexity of the systems in question. This special issue presents a series of papers that deconstruct the question of agent choice with the aim of progressively improving the success rate of biological control. Specifically they ask: (i) what potential agents are available and what should we know about them? (ii) what type, timing and degree of damage is required to achieve success? and (iii) which potential agent will reach the necessary density, at the right time, to exert the required damage in the target environment?
Resumo:
The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.
Resumo:
The painted apple moth (PAM), Teia anartoides (Walker) (Lepidoptera: Lymantriidae) made a recent incursion into New Zealand. A nucleopolyhedrovirus (NPV), Orgyia anartoides NPV (OranNPV), originally isolated from PAM in Australia, was tested for its pathogenicity to PAM and a range of non-target insect species found in New Zealand, to evaluate its suitability as a microbial control for this insect invader. Dosage-mortality tests showed that OranNPV was highly pathogenic to PAM larvae; mean LT50 values for third instars ranged from 17.9 to 8.1 days for doses from 102 to 105 polyhedral inclusion bodies/larva, respectively. The cause of death in infected insects was confirmed as OranNPV. Molecular analysis established that OranNPV can be identified by PCR and restriction digestion, and this process complemented microscopic examination of infected larvae. No lymantriid species occur in New Zealand; however, the virus had no significant effects on species from five other lepidopteran families (Noctuidae, Tortricidae, Geometridae, Nymphalidae and Plutellidae) or on adult honeybees. Thus, all indications from this initial investigation are that OranNPV would be an important tool in the control of PAM in a future incursion of this species into New Zealand.
Resumo:
Factors that influence the localized abundance and distribution of lesser mealworm, Alphitobius diaperinus (Panzer), in litter of two compacted earth-floor broiler houses in subtropical Australia were studied using various experimental manipulations. Numbers of lesser mealworms substantially increased inside caged areas and under uncaged empty feed pans placed in open areas of the houses. These populations were found to be localized and independent of chicken-feed, manure, and high beetle populations that normally occur under existing feed pans. Substantial horizontal movement of larvae to under feed pans was recorded. Placing metal barriers around these pans significantly restricted this movement. In almost all treatments, lesser mealworms typically peaked in numbers during the middle of the flock time. This temporal pattern of abundance also was observed under pans within barriers, where relatively low insect numbers occurred, but it was not observed in uncaged open areas (where chickens had complete access). It is likely that larvae do not establish in open areas, but fluctuate in numbers as they either move to refuges away from chickens or suffer high rates of mortality. In these refuges, larvae peak in numbers and then leave the litter environment to pupate in the earth floor before the end of the flock time. This behavior might be exploited for management of lesser mealworm by targeting applications of control agents.
Resumo:
This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hubner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed 'super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant.
Resumo:
Insecticides are used by growers to control Frankliniella occidentalis (western flower thrips) in Australian vegetable crops. However, limited information was available on the efficacy of some insecticides used against F. occidentalis and data on new insecticides that could be included in a resistance management program were required. The efficacy of 16 insecticides in controlling F. occidentalis was tested in four small plot trials in chillies and capsicums. Spinosad, fipronil and methamidophos were effective against adults and larvae. Spirotetramat had no efficacy against adults but was very effective against larvae. Pyridalyl was moderately effective against larvae. Methidathion showed limited effectiveness. Abamectin, amorphous silica, bifenthrin, chlorpyrifos, dimethoate, emamectin benzoate, endosulfan, imidacloprid, methomyl and insecticidal soap were not effective. Laboratory bioassays on F. occidentalis collected from the field trials showed resistance to bifenthrin but not to the other insecticides tested. The trials demonstrated that some insecticides permitted for use against F. occidentalis are not effective and identified a number of insecticides, including the new ones spirotetramat and pyridalyl, that are effective and that could be used to manage the pest within a resistance management program.
Resumo:
Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.
Resumo:
The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.
Resumo:
The plant phenotypic preference and performance of Aconophora compressa, a biocontrol agent for Lantana camara in Australia, were assessed. Overall, there were no significant trends of A. compressa favouring any one particular phenotype. However, there was a gradual decrease in performance through subsequent generations, with populations of A. compressa dying out on two phenotypes. Females did not show preference for any particular lantana phenotype, ovipositing similarly on all five phenotypes presented in choice trials and all 16 phenotypes in no-choice trials. Nymphs developed on all 16 phenotypes tested. Percent development and time to complete development were not significant in the first generation but were significant in the second generation. There was a general decrease in performance with generation. However, this was probably due to rising temperatures with season rather than an effect of phenotype. These results suggest that A. compressa should establish on all phenotypes within its geographic range.
Resumo:
Eucalyptus species, native to Australia, Indonesia, the Philippines, and New Guinea, are the most widely planted hardwood timber species in the world. The trees, moved around the globe as seeds, escaped the diverse community of herbivores found in their native range. However, a number of herbivore species from the native range of eucalypts have invaded many Eucalyptus-growing regions in North America, Europe, Africa, Asia, and South America in the last 30 years. In addition, there have been shifts of native species, particularly in Africa, Asia, and South America, onto Eucalyptus. There are risks that these species as well as generalist herbivores from other parts of the world will invade Australia and threaten the trees in their native range. The risk to Eucalyptus plantations in Australia is further compounded by planting commercially important species outside their endemic range and shifting of local herbivore populations onto new host trees. Understanding the mechanisms underlying host specificity of Australian insects can provide insight into patterns of host range expansion of both native and exotic insects.
Resumo:
Abstract Sceliodes cordalis, eggfruit caterpillar, is an important pest of eggplant in Australia but little information was available on its biology. This study was conducted to determine the effect of temperature on the development on eggplant of eggs, larvae and pupae. Insects were reared at five constant temperatures from 20.5°C to 30.5°C with a 12:12 L : D photoperiod and the thermal summation model was fitted to the developmental rate data. Developmental zeroes and thermal constants of 11.22°C and 61.32 day-degrees for eggs, 12.03°C and 179.60 day-degrees for larvae, and 14.43°C and 107.03 day-degrees for pupae were determined. Several larvae reared at 20.5°C entered diapause.
Resumo:
Healthy hardwoods: A field guide to pests, diseases and nutritional disorders in subtropical hardwoods can be used to help identify the common damaging insects, fungi and nutritional disorders in young eucalypt (Eucalyptus and Corymbia species) plantations in subtropical eastern Australia. This guide includes photographs of each insect, fungus and nutritional disorder and the damage they cause, along with a brief description to aid identification. A brief host list for insects and fungi, including susceptibility and occurrence, is provided as a guide only. A hand lens will be useful, especially to identify fungi. Although it is possible to identify insects and fungi from these photographs, laboratory examination will sometimes be necessary. For example, microscopes and culturing media might be used to identify fungi. Information about four exotic pests and diseases has also been included in the Biosecurity threats chapter. Potentially, these would have a severe impact on plantation and natural forests if introduced into Australia. To prevent establishment of these pests, early detection and identification is crucial. If an exotic insect or disease is suspected, then an immediate response is required. Usually, the first response will be to contact the nearest Australian Quarantine and Inspection Service office or forestry agency to seek advice.
Resumo:
The eucalypt leaf beetle, Paropsis atomaria Olivier, is an increasingly important pest of eucalypt plantations in subtropical eastern Australia. A process-based model, ParopSys, was developed using DYMEXTM and was found to accurately predict the beetle populations. Climate change scenarios within the latest Australian climate model forecast range were run in ParopSys at three locations to predict changes in beetle performance. Relative population peaks of early generations did not change but shifted to earlier in the season. Temperature increases of 1.0 to 1.5 ºC or greater predicted an extra generation of adults at Gympie and Canberra, but not for Lowmead, where increased populations of late season adults were observed under all scenarios. Furthermore, an additional generation of late-larval stages was predicted at temperature increases of greater than 1.0 ºC at Lowmead. Management strategies to address these changes are discussed, as are requirements to improve the predictive capacity of the model.
Resumo:
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.