86 resultados para Etherisches Öl
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.
Resumo:
Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R (2) sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.
Resumo:
Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.
Resumo:
Diachasmimorpha kraussii is a larval parasitoid of dacine fruit flies. Host utilisation behaviour, including field foraging behaviour, is poorly known in this species. The diurnal foraging behaviour of D. kraussii and one of its common hosts, Bactrocera tryoni, in a nectarine orchard was concurrently recorded. Observations of mating, resting, feeding and oviposition were taken two-hourly on 42 trees, commencing at 07:00 h and terminating at 17:30 h, for 17 days. Resting and oviposition were common events within the orchard for both species, while mating behaviours were not recorded in the orchard for either species. Feeding was not observed for D. kraussii and was rare for B. tryoni. At the level of the individual tree there was a very weak, but significant correlation between parasitoid and fly abundance over a day, but when broken down to the individual observation periods the correlations were absent, or were weakly significant in an inconsistent manner (i.e. sometimes positively correlated, sometimes negatively correlated). At the orchard level, abundance of the parasitoid was not correlated with adult fly abundance. Results suggest that D. kraussii forage independently to adult B. tryoni, a result consistent with a prediction that their foraging is largely driven by larval or plant damage cues.
Resumo:
Parthenium hysterophorus L. is a weed of global significance that has become a major weed in Australia and many other parts of the world. A combined approach for the management of parthenium weed using biological control and plant suppression, was tested under field conditions over a two-year period in southern central Queensland. The six suppressive plant species, selected for their demonstrably suppressive ability in earlier glasshouse studies, worked synergistically with the biological control agents (Epiblema strenuana Walker, Zygogramma bicolorata Pallister, Listronotus setosipennis Hustache and Puccinia abrupta var. partheniicola) present in the field to reduce the growth (above ground biomass) of parthenium weed, by between 60–86% and 47–91%, in Years 1 and 2, respectively. The biomass of the suppressive plants was between 6% and 23% greater when biological control agents were present than when the biological control agents had been excluded. This shows that parthenium weed can be more effectively managed by combining the current biological control management strategy with selected sown suppressive plant species, both in Australia and elsewhere.
Resumo:
It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.