80 resultados para Australian film industry
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
BackgroundAvian influenza viruses (AIVs) are found worldwide in numerous bird species, causing significant disease in gallinaceous poultry and occasionally other species. Surveillance of wild bird reservoirs provides an opportunity to add to the understanding of the epidemiology of AIVs. MethodsThis study examined key findings from the National Avian Influenza Wild Bird Surveillance Program over a 5-year period (July 2007-June 2012), the main source of information on AIVs circulating in Australia. ResultsThe overall proportion of birds that tested positive for influenza A via PCR was 1.90.1%, with evidence of widespread exposure of Australian wild birds to most low pathogenic avian influenza (LPAI) subtypes (H1-13, H16). LPAI H5 subtypes were found to be dominant and widespread during this 5-year period. ConclusionGiven Australia's isolation, both geographically and ecologically, it is important for Australia not to assume that the epidemiology of AIV from other geographic regions applies here. Despite all previous highly pathogenic avian influenza outbreaks in Australian poultry being attributed to H7 subtypes, widespread detection of H5 subtypes in wild birds may represent an ongoing risk to the Australian poultry industry.
Resumo:
There are many ways in which research messages and findings can be extended to the expansive cotton community. As everyone learns differently it is crucial that information is delivered in a variety of ways to meet the various learning needs of the CottonInfo team’s broad audience. In addition different cotton production areas often require targeted information to address specific challenges. Successful implementation of innovative research outcomes typically relies on a history of cultivated communication between the researcher and the end-user, the grower. The CottonInfo team, supported by a joint venture between Cotton Seed Distributors, Cotton Research Development Corporation, Cotton Australia and other collaborative partners, represents a unique model of extension in Australian agriculture. Industry research is extended via regionally based Regional Development Officers backed by support from Technical Specialists. The 2015 Cotton Irrigation Technology Tour is one example of a successful CottonInfo capacity building activity. This tour took seven CRDC funded irrigation-specific researchers to Emerald, Moree and Nevertire to showcase their research and technologies. These events provided irrigators and consultants with the opportunity to hear first-hand from researchers about their technologies and how they could be applied onfarm. This tour was an example of how the CottonInfo team can connect growers and researchers, not only to provide an avenue for growers to learn about the latest irrigation research, but for researchers to receive feedback about their current and future irrigation research.
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.
Resumo:
Weed management has become increasingly challenging for cotton growers in Australia in the last decade. Glyphosate, the cornerstone of weed management in the industry, is waning in effectiveness as a result of the evolution of resistance in several species. One of these, awnless barnyard grass, is very common in Australian cotton fields, and is a prime example of the new difficulties facing growers in choosing effective and affordable management strategies. RIM (Ryegrass Integrated Management) is a computer-based decision support tool developed for the south-western Australian grains industry. It is commonly used there as a tool for grower engagement in weed management thinking and strategy development. We used RIM as the basis for a new tool that can fulfil the same types of functions for subtropical Australian cotton-grains farming systems. The new tool, BYGUM, provides growers with a robust means to evaluate five-year rotations including testing the economic value of fallows and fallow weed management, winter and summer cropping, cover crops, tillage, different herbicide options, herbicide resistance management, and more. The new model includes several northernregion- specific enhancements: winter and summer fallows, subtropical crop choices, barnyard grass seed bank, competition, and ecology parameters, and more freedom in weed control applications. We anticipate that BYGUM will become a key tool for teaching and driving the changes that will be needed to maintain sound weed management in cotton in the near future.
Resumo:
In previous chapters of this volume, various authors describe the development of herbaceous legumes for pastures on clay soils in Queensland until about the 1980s. Emphasis is on the collection and evaluation of the genus Desmanthus, given its relatively recent addition to agriculture and considerable potential for providing useful pasture legumes for clay soils, particularly in the seasonally dry areas of northern Australia. Other genera are also discussed, including early assessments of herbaceous legumes that were later developed for clay soils (Clitoria, Macroptilium and Stylosanthes). This chapter provides a summary of the development of herbaceous legumes for clay soils in Queensland from these earlier assessments until present. Beef cattle farming is the principal agricultural enterprise in seasonally dry areas of northern Australia, including large areas of clay soils in Queensland. Sown and naturally occurring grasses provide the key feed resource, and the inclusion of sown legumes can significantly improve live-weight gain and reproductive performance per unit area. Queensland has been the centre of development for legumes for clay soils in tropical and subtropical areas of Australia, mostly through assessing and developing plants held in the Australian Tropical Forages Genetic Resource Collection (ATFGRC) (now a component of the Australia Pastures Genebank (APG)). The systematic appraisal of genetic material for clay soils was a focus of well-resourced government research up to the early to mid-1990s, but declined thereafter as sown pasture research teams were dismantled and funding to maintain the ATFGRC declined. Cultivar development is now conducted by small government, private enterprise and university research teams that collaborate where possible. In recent studies the use of experienced researcher knowledge and old plant evaluation sites has been particularly valuable for identifying potentially useful material. Cultivars for long- and short-term pastures on clay soils have been developed to the level of commercial seed production for Desmanthus (five cultivars from four species with two cultivars (one composite) in current use), Clitoria ternatea (one cultivar), Macroptilium bracteatum (two) and Stylosanthes seabrana (two). Other potential cultivars of these species are currently in various stages of development. Each species has different production niches depending on climate, clay soil type and grazing strategy. Adoption of these cultivars is occurring but has variously been impeded by limited promotion, mismatch of seed supply and demand, and difficulty establishing legumes in pastures of some key grass species. Recent renewed investment by the Australian Beef Industry has seen revived government research into pasture legumes in Queensland and rejuvenation of the APG.
Resumo:
In Australia, Sportak® (a.i., prochloraz) has been registered since the early 1980's for the postharvest control of both anthracnose and stem-end rots in papaya fruit, despite the persistence of fruit breakdown due to disease during transit and at market destinations. Consequently, the Australian papaya industry has been concerned over the efficacy of prochloraz and whether substitute or alternative solutions were available for better disease control, particularly during times of peak disease pressure. This study therefore investigated the effects of various postharvest treatments for disease control in papaya. Fruit were harvested at colour break from coastal farms in Far North Queensland and treated with commercial rates of various fungicides, including prochloraz, imazalil, thiabendazole and fludioxonil. Additional solutions known to inhibit disease were examined, including chitosan and carnauba wax both with and without ammonium carbonate (AC). Following treatment, fruit were ripened and assessed for quality over their shelf life. Fludioxonil when applied as a hot dip was found to be a more efficacious treatment for control of disease in papaya than prochloraz. The other fungicides were moderately effective, as both thiabendazol and prochloraz exhibited an intermediate response and imazalil was the least effective. Disease severity was lowest in fruit treated with AC followed by chitosan, whilst chitosan delayed degreening. Overall, the study found that hot fludioxonil provided an effective replacement of the currently registered chemical prochloraz, and that alternate solutions such chitosan and AC may also be beneficial, particularly for low chemical input farming systems.
Resumo:
In recent years, there has been increasing interest from growers, merchants, supermarkets and consumers in the establishment of a national mild onion industry. Imperative to the success of the emergent industry is the application of the National Mild Onion Certification Scheme that will establish standards and recommendations to be met by growers to allow them to declare their product as certified mild onions. The use of sensory evaluation techniques has played an imperative role throughout the project timeline that has also included varietal evaluation, evaluation of current agronomic practices and correlation of chemical analysis data. Raw onion consumer acceptance testing on five different onion varieties established preferences amongst the varieties for odour, appearance, flavour, texture and overall and differences in the level of pungency and aftertaste perceived. Demographic information was obtained regarding raw and cooked onion use, frequency of consumption and responses to the idea of a mild, less pungent onion. Additionally, focus groups were conducted to further investigate consumer attitudes to onions. Currently, a trained onion panel is being established to evaluate several odour, flavour and aftertaste attributes. Sample assessments will be conducted in January 2004 and correlated with chemical analyses that will hopefully provide the corner-stone for the anticipated Certification Scheme.
Resumo:
The project builds on successful industry collaborations in 2008 and 2009 to research key hatchery, production and marketing issues for cobia production in Queensland. Pacific Reef Fisheries and Ecofish International have identified cobia production as long term company goals and see the research and technology transfer in the project as a key part of this development.
Resumo:
The demonstrated wide adaptability, substantial yield potential and proven timber quality of African mahogany (Khaya senegalensis) from plantings of the late 1960s and early 1970s in northern Australia have led to a resurgence of interest in this high-value species. New plantations or trials have been established in several regions since the early 1990s -in four regions in north Queensland, two in the Northern Territory and one in Western Australia. Overall, more than 1500 ha had been planted by early 2007, and the national annual planting from 2007-2008 as currently planned will exceed 2400 ha. Proceedings of two workshops have summarised information available on the species in northern Australia, and suggested research and development (R&D) needs and directions. After an unsustained first phase of domestication of K. senegalensis in the late 1960s to the early 1970s, a second phase began in northern Australia in 2001 focused on conservation and tree improvement that is expected to provide improved planting stock by 2010. Work on other aspects of domestication is also described in this paper: the current estate and plans for extension; site suitability, soils and nutrition; silviculture and management; productivity; pests and diseases; and log and wood properties of a sample of superior trees from two mature plantations of unselected material near Darwin. Some constraints on sustainable plantation development in all these fields are identified and R&D needs proposed. A sustained R&D effort will require a strategic coordinated approach, cooperative implementation and extra funding. Large gains in plantation profitability can be expected to flow from such inputs.
Resumo:
BACKGROUND: Glyphosate-resistant cotton varieties are an important tool for weed control in Australian cotton production systems. To increase the sustainability of this technology and to minimise the likelihood of resistance evolving through its use, weed scientists, together with herbicide regulators, industry representatives and the technology owners, have developed a framework that guides the use of the technology. Central to this framework is a crop management plan (CMP) and grower accreditation course. A simulation model that takes into account the characteristics of the weed species, initial gene frequencies and any associated fitness penalties was developed to ensure that the CMP was sufficiently robust to minimise resistance risks. RESULTS: The simulations showed that, when a combination of weed control options was employed in addition to glyphosate, resistance did not evolve over the 30 year period of the simulation. CONCLUSION: These simulations underline the importance of maintaining an integrated system for weed management to prevent the evolution of glyphosate resistance, prolonging the use of glyphosate-resistant cotton.
Resumo:
Recent incidents of mycotoxin contamination (particularly aflatoxins and fumonisins) have demonstrated a need for an industry-wide management system to ensure Australian maize meets the requirements of all domestic users and export markets. Results of recent surveys are presented, demonstrating overall good conformity with nationally accepted industry marketing standards but with occasional samples exceeding these levels. This paper describes mycotoxin-related hazards inherent in the Australian maize production system and a methodology combining good agricultural practices and the hazard analysis critical control point framework to manage risk.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Potential of VIS-NIR Spectroscopy to predict perceived ‘muddy’ taint in australian farmed barramundi
Resumo:
Sensory analysis of food involves the measurement, interpretation and understanding of human responses to the properties of food perceived by the senses such as sight, smell, and taste (Cozzolino et al. 2005). It is important to have a quantitative means for assessing sensory properties in a reasonable way, to enable the food industry to rapidly respond to the changing demands of both consumers and the market. Aroma and flavour are among the most important properties for the consumer, and numerous studies have been performed in attempts to find correlations between sensory qualities and objective instrumental measurements. Rapid instrumental methods such as near infrared spectroscopy (NIR) might be advantageous to predict quality of different foods and agricultural products due to the speed of analysis, minimum sample preparation and low cost. The advantages of such technologies is not only to assess chemical structures but also to build an spectrum, characteristic of the sample, which behaves as a “finger print” of the sample.
Resumo:
Net form of net blotch (NFNB), caused by Pyrenophora teres Drechs. f. teres Smedeg., is a serious disease problem for the barley industry in Australia and other parts of the world. Three doubled haploid barley populations, Alexis/Sloop, WI2875-1/Alexis, and Arapiles/Franklin, were used to identify genes conferring adult plant resistance to NFNB in field trials. Quantitative trait loci (QTLs) identified were specific for adult plant resistance because seedlings of the parental lines were susceptible to the NFNB isolates used in this study. QTLs were identified on chromosomes 2H, 3H, 4H, and 7H in both the Alexis/Sloop and WI2875-1/Alexis populations and on chromosomes 1H, 2H, and 7H in the Arapiles/Franklin population. Using QTLNetwork, epistatic interactions were identified between loci on chromosomes 3H and 6H in the Alexis/Sloop population, between 2H and 4H in the WI2875-1/Alexis population, and between 5H and 7H in the Arapiles/Franklin population. Comparisons with earlier studies of NFNB resistance indicate the pathotype-dependent nature of many resistance QTLs and the importance of establishing an international system of pathotype nomenclature and differential testing.