59 resultados para work productivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pasture recovery PDS, Mulga lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important vegetable crops grown in Indonesia, and particularly lowland coastal production, are the true shallot and chilli. These crops are usually grown in rotation with rice but are far more valuable crops and are increasingly in high demand. They offer an opportunity for small farmers to generate extra income, increase farm profitability and shift away from subsistence production. However, the yield and profitability of shallot and chilli production is severely limited by a range of agronomic constraints. This project aims towards raising the productivity of allium (shallot and garlic) and chilli/capsicum cropping systems. The methodology will include a benchmarking survey and review of grower practices. This will be supplemented with physical surveys of crops for disease incidence and efficiency of fertiliser use. Once surveys are completed in Indonesia and the important pathogens identified, recommendations can be made for disease management. This will include review of chemical usage in Indonesia and Australia to provide best management guidelines for the application of insecticides, fungicides and other chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project with MLA to implement recommendations from "Review of productivity decline in sown grass pasture".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project aims at improving the productivity and profitability of mung beans, soy beans and peanuts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize productivity improvement for tropical and subtropical Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhance productivity of peanuts in Papua New Guinea and Australia. Also the application of remote sensing technologies to enhance profitability in peanut systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method used to manage a fallow can influence your overall farm profitability. The benefits of a well managed fallow include improved soil health, reduced weed control costs, a reduction in the number of machinery operations and an increase in sugarcane productivity. Growers generally have two main options for managing their fallow; 1) bare fallow or 2) rotational crop. A bare fallow predominantly involves the use of tillage or herbicides to keep the block free of weeds and volunteer cane. Growing a rotational crop generally uses legumes like soybeans or cowpeas because of their soil health and nitrogen benefits. This paper looks into some of these methods and the flow on effects on farm profitability. Fallow management should never be viewed in isolation, as it is an integral part of the cane farming system. In this analysis we will investigate the effect of fallow management and farming system practices on the whole of farm profitability. There are many factors to consider when looking at different fallow management options. These include the type of farming system practices used and the suitability of a legume crop to a particular situation. Legume crops may not be suited to all situations, therefore it is recommended to consult with your local agronomist for more specific advice. One method of examining the options is to work through an example. In this case we will look at four options that are based on some common fallow management and farming system practices used in the Herbert region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable estimates of forest productivity are essential for improved predictions of timber yields for the private native spotted gum resource in southern Qld and northern NSW. The aim of this research was to estimate the potential productivity of native spotted gum forests on private land by making use of available inventory data collated from Qld and northern NSW for spotted gum forest on Crown land (i.e. state forests). We measured a range of site-related factors to determine their relative importance in predicting productivity of spotted gum forest. While measures such as stand height and height-diameter relationships are known to be useful predictors of productivity, we aimed to determine productivity for a site where this information was not available. Through estimation of stand growth rates we developed a spotted gum productivity assessment tool (SPAT) for use by landholders and extension officers. We aimed to develop a tool to allow private landholders to see the benefits of maintaining their timber resource. This paper summarises the information used to develop the SPAT with a particular focus on forest growth relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of a series of spotted gum (Corymbia citirodora) progeny trials, established in the subtropical region of Queensland, Australia, was undertaken to provide information for the development of advanced-generation breeding populations suitable for pulp production. Measurements of growth at two ages were combined with assessments of wood density and pulp yield from a selected sample of provenances to provide comparisons between provenances, to generate genetic parameter estimates and to predict genetic gain potential. Although growth at this age was moderate relative to other eucalypts, the near-infrared predictions of average wood density of 756 kg m(-3) and pulp yield of 55% indicate the species has considerable potential as a pulpwood crop. A pulp productivity breeding objective was used to identify production populations using a range of selection trait weightings to determine potential genetic gain for pulp productivity. Genetic parameters indicated (1) levels of genetic control were moderate for all traits and higher for wood property traits, (2) genetic improvements could be achieved by selection among and within provenances with greater levels of improvement available from selection within populations, (3) genotype by environment interactions were negligible, (4) genetic correlations between traits were favourable, and (5) selection of volume production alone would maximise improvements in pulp productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 130,000 ha of hardwood plantations have been established in north-eastern Australia in the last 15 years. As a result of poor taxa selection approximately 25,000 ha have failed due to drought, pest and disease or extreme weather events (drought and cyclones). Given the predicted impacts of climate change in north-eastern Australia (reduced rainfall, increased temperatures and an increase in extreme weather conditions, particularly drought, storms and cyclones), selection of the right taxa for plantation development is even more critical as the taxon planted needs to be able to perform well under the environments experienced at planting as well as those that may develop over in 30 years time as a result of changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major objective of this experiment was to identify optimum plant population densities for different maize maturity groups depending on the environments’ potential and identify situations that reduce risk of crop failures while maximizing opportunities for better yield when weather conditions are good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.