72 resultados para storage temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement or accurate simulation of soil temperature is important for improved understanding and management of peanuts (Arachis hypogaea L.), due to their geocarpic habit. A module of the Agricultural Production Systems Simulator Model (APSIM), APSIM-soiltemp, which uses input of ambient temperature, rainfall and solar radiation in conjunction with other APSIM modules, was evaluated for its ability to simulate surface 5 cm soil temperature in 35 peanut on-farm trials conducted between 2001 and 2005 in the Burnett region (25°36'S to 26°41'S, 151°39'E to 151°53'E). Soil temperature simulated by the APSIM-soiltemp module, from 30 days after sowing until maturity, closely matched the measured values (R2 ≥ 0.80)in the first three seasons (2001-04). However, a slightly poorer relationship (R2 = 0.55) between the observed and the simulated temperatures was observed in 2004-05, when the crop was severely water stressed. Nevertheless, over all the four seasons, which were characterised by a range of ambient temperature, leaf area index, radiation and soil water, each of which was found to have significant effects on soil temperature, a close 1:1 relationship (R2 = 0.85) between measured and simulated soil temperatures was observed. Therefore, the pod zone soil temperature simulated by the module can be generally relied on in place of measured input of soil temperature in APSIM applications, such as quantifying climatic risk of aflatoxin accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory experiment compared germination of the invasive exotic grass Hymenachne amplexicaulis (Rudge) Nees and the native H. acutigluma (Steud.) Gilliland. Seeds of both species were exposed to combinations of light (constant dark, alternating dark/light or constant light), temperature (constant or alternating) and nitrate regimes (with or without the addition of KNO3). Three seed lots of H. amplexicaulis (fresh, two adn four months old) and one of H. acutigluma (fresh seed) were tested. A significant temperature x light x nitrate x seed lot interaction occured. At a constant temperature very few seeds of either H. amplexicaulis or H. acutigluma germinated, regardless of the light regime or addition of KNO3. Generally, maximum germination occurred under a combination of alternating temperature, the presence of light (either constant or alternating) and the addition of KNO3. The exception was four month stored H. amplexicaulis seed, which reached maximum germinaction without the need for KNO3. Fresh seed of both H. amplexicaulis and H. acutigluma exhibited similar germination requirements. These findings suggest that conditions that buffer seeds from light and/or temperature fluctuations could reduce germination and possibly extend the life of seed banks of both H. amplexicaulis and H. acutigluma. Conversely, for land managers trying to control the exotic H. amplexicaulis, activities that create more favourable conditions for germination may help deplete seed banks faster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present review identifies various constraints relating to poor adoption of ley-pastures in south-west Queensland, and suggests changes in research, development and extension efforts for improved adoption. The constraints include biophysical, economic and social constraints. In terms of biophysical constraints, first, shallower soil profiles with subsoil constraints (salt and sodicity), unpredictable rainfall, drier conditions with higher soil temperature and evaporative demand in summer, and frost and subzero temperature in winter, frequently result in a failure of established, or establishing, pastures. Second, there are limited options for legumes in a ley-pasture, with the legumes currently being mostly winter-active legumes such as lucerne and medics. Winter-active legumes are ineffective in improving soil conditions in a region with summer-dominant rainfall. Third, most grain growers are reluctant to include grasses in their ley-pasture mix, which can be uneconomical for various reasons, including nitrogen immobilisation, carryover of cereal diseases and depressed yields of the following cereal crops. Fourth, a severe depletion of soil water following perennial ley-pastures (grass + legumes or lucerne) can reduce the yields of subsequent crops for several seasons, and the practice of longer fallows to increase soil water storage may be uneconomical and damaging to the environment. Economic assessments of integrating medium- to long-term ley-pastures into cropping regions are generally less attractive because of reduced capital flow, increased capital investment, economic loss associated with establishment and termination phases of ley-pastures, and lost opportunities for cropping in a favourable season. Income from livestock on ley-pastures and soil productivity gains to subsequent crops in rotation may not be comparable to cropping when grain prices are high. However, the economic benefits of ley-pastures may be underestimated, because of unaccounted environmental benefits such as enhanced water use, and reduced soil erosion from summer-dominant rainfall, and therefore, this requires further investigation. In terms of social constraints, the risk of poor and unreliable establishment and persistence, uncertainties in economic and environmental benefits, the complicated process of changing from crop to ley-pastures and vice versa, and the additional labour and management requirements of livestock, present growers socially unattractive and complex decision-making processes for considering adoption of an existing medium- to long-term ley-pasture technology. It is essential that research, development and extension efforts should consider that new ley-pasture options, such as incorporation of a short-term summer forage legume, need to be less risky in establishment, productive in a region with prevailing biophysical constraints, economically viable, less complex and highly flexible in the change-over processes, and socially attractive to growers for adoption in south-west Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 35 +/- A 2A degrees C) had no effect on the cellular stages in root formation of the Slash x Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25A degrees C and slowest at 15A degrees C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (> 80%) but reduced to 59% at 35A degrees C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 352C) had no effect on the cellular stages in root formation of the Slash * Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25C and slowest at 15C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (>80%) but reduced to 59% at 35C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the development of aquaculture of the tropical spiny lobster, Panulirus ornatus, has increased markedly over the past 10 yr because of strong market demand and high prices. In Australia, economic conditions will necessitate that a semi-intensive approach be taken, possibly involving managed environmental conditions. Identification of optimal temperature and salinity levels will be necessary, and therefore two experiments were performed to examine these two parameters. Juvenile lobsters were grown in tanks at five temperatures (19, 22, 25, 28 and 31 C). Growth was significantly affected by temperature (P < 0.01), and maximal growth occurred at 25-31 C. Examination of the temperature effect on molt increment and intermolt period indicated that 27 C was the optimal temperature, at which molt increment was greatest and intermolt period the least. Temperature also had a significant (P < 0.01) positive effect on apparent feed intake (AFI). Juvenile lobsters were also exposed to four different salinities (20, 25, 30 and 35 ppt) over a period of 91 d. Significant differences (P < 0.01) were apparent for both survival and growth. Lowest survival occurred at 35 ppt which may be attributable to higher cannibalism at that salinity. Growth was highest at 35 ppt and progressively less at lower salinities. Although full marine salinity (35 ppt) will generate best performance of P. ornatus, its capacity to tolerate reduced salinity will provide greater opportunity to develop commercial aquaculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mangoes can express several skin disorders following important postharvest treatments. Responses are often cultivar specific. This paper reports the responses of two new Australian mango cultivars to some of these treatments. 'Honey Gold' mango develops "under skin browning" early during cold storage. This is thought to be partly caused by a discolouration of the latex vessels which then spreads to the surrounding cells. The symptoms appear to be worse in fruit from hotter production areas and that have been cooled to temperatures below 18C soon after harvest. Current commercial recommendations are to cool fruit to 18C, which limits postharvest handling options. Recent trials have confirmed that delayed or slowed cooling after harvest can reduce under skin browning. The defect may also be associated with physical injury to the skin during harvesting and packing. Irradiation is potentially an important disinfestation treatment for fruit fly in Australian mangoes. The 'B74' mango cultivar develops significant skin damage following irradiation, mainly due to discolouration of the cells surrounding the lenticels. Recent results confirmed that fruit harvested directly from the tree into trays without exposure to water or postharvest chemicals are not damaged by irradiation, while commercially harvested and packed fruit are damaged. Several major harvest and postharvest steps appear to increase lenticel sensitivity to irradiation. Further work is required to develop commercially acceptable protocols to facilitate 'Honey Gold' and 'B74' mango distribution and marketing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Sceliodes cordalis, eggfruit caterpillar, is an important pest of eggplant in Australia but little information was available on its biology. This study was conducted to determine the effect of temperature on the development on eggplant of eggs, larvae and pupae. Insects were reared at five constant temperatures from 20.5°C to 30.5°C with a 12:12 L : D photoperiod and the thermal summation model was fitted to the developmental rate data. Developmental zeroes and thermal constants of 11.22°C and 61.32 day-degrees for eggs, 12.03°C and 179.60 day-degrees for larvae, and 14.43°C and 107.03 day-degrees for pupae were determined. Several larvae reared at 20.5°C entered diapause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweetpotato, Ipomoea batatas, inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT) clones of 14 sweetpotato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study. Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars. .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fumigation with phosphine has the potential to disinfest grain stored in silo bags but only limited research has been conducted on whether phosphine fumigation can be undertaken effectively and safely in this form of storage. Fumigation with phosphine was tested on two (70 m) replicate silo bags each containing 240 t of wheat (9.9 and 9.2% m.c.). The target application rate of phosphine was 1.5 g m 3 with a fumigation period of 17 days. Aluminium phosphide tablets were inserted into each bag at ten release points spaced at 7 m intervals starting 3.5 m from either end of the bag. A total of 14 bioassay cages containing mixed age populations of strongly phosphine resistant Rhyzopertha dominica (F.) were inserted into each fumigated silo bag. Complete control of all life stages of R. dominica was achieved at all locations in the fumigated silo bags. Phosphine concentrations at release points increased rapidly and remained high for the duration of the fumigation. Concentrations at midway points were always lower than at the release points but exceeded 215 ppm for ten days. The diffusion coefficient of available phosphine averaged over the first three full days of the fumigation for both fumigated silo bags was 2.8 x 10 7. Venting the silo bag with an aeration fan reduced the phosphine concentration by 99% after 12 h. Relatively small amounts of phosphine continued to desorb after the venting period. Although grain temperature at the core of the silo bags remained stable at 29degreesC for 17 days, grain at the surface of the silo bags fluctuated daily with a mean of 29degreesC. The results demonstrate that silo bags can be fumigated with phosphine for complete control of infestations of strongly phosphine resistant R. dominica and potentially other species.