36 resultados para physicality requirement
Resumo:
The colour of commercial cooked black tiger prawns (Penaeus monodon) is a key quality requirement to ensure product is not rejected in wholesale markets. The colour, due to the carotenoid astaxanthin, can be impacted by frozen storage, but changes in colour or astaxanthin profile, during frozen storage, have not been studied in detail. Subsequently in this study, the aims were to define the astaxanthin (as cis, trans, mono-ester and di-ester forms) content, together with the colour properties, in both pleopods (legs) and abdominal segments. Changes in astaxanthin content and colour properties were further determined during frozen storage (−20°C). Total astaxanthin content was seen to decrease in all samples over time, with the rate of degradation being significantly greater (P < 0.05) in pleopods than abdomen. In both pleopods and abdomen, rate of degradation of esterified forms was significantly greater (P < 0.05) than non-esterified forms. Hue angle (increase), a* value (decrease) and L value (increase) were all seen to significantly change (P < 0.05) during storage, with changes being more prevalent in the pleopods. The pleopods are the key indicator of astaxanthin and colour loss in cooked black tiger prawns and preservation strategies are required to preserve astaxanthin and colour during frozen storage.
Resumo:
There is an increasing requirement for more astute land resource management through efficiencies in agricultural inputs in a sugar cane production system. A precision agriculture (PA) approach can provide a pathway for a sustainable sugarcane production system. One of the impediments to the adoption of PA practices is access to paddock-scale mapping layers displaying variability in soil properties, crop growth and surface drainage. Variable rate application (VRA) of nutrients is an important component of PA. However, agronomic expertise within PA systems has fallen well behind significant advances in PA technologies. Generally, advisers in the sugar industry have a poor comprehension of the complex interaction of variables that contribute to within-paddock variations in crop growth. This is regarded as a significant impediment to the progression of PA in sugarcane and is one of the reasons for the poor adoption of VRA of nutrients in a PA approach to improved sugar cane production. This project therefore has established a number of key objectives which will contribute to the adoption of PA and the staged progression of VRA supported by relevant and practical agronomic expertise. These objectives include provision of base soils attribute mapping that can be determined using Veris 3100 Electrical Conductivity (EC) and digital elevation datasets using GPS mapping technology for a large sector of the central cane growing region using analysis of archived satellite imagery to determine the location and stability of yield patterns over time and in varying seasonal conditions on selected project study sites. They also include the stablishment of experiments to determine appropriate VRA nitrogen rates on various soil types subjected to extended anaerobic conditions, and the establishment of trials to determine nitrogen rates applicable to a declining yield potential associated with the aging of ratoons in the crop cycle. Preliminary analysis of archived yield estimation data indicates that yield patterns remain relatively stable overtime. Results also indicate the where there is considerable variability in EC values there is also significant variation in yield.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.
Resumo:
The Brigalow Belt bioregion of southern and central Queensland supports a large percentage of northern Australia's sown pastures and beef herd. The Brigalow soils were widely thought to have adequate phosphorus (P) for cropping, sown pastures and grazing animals, which has led to almost no use of P fertiliser on sown pastures. The majority of pastures established in the region were sown with tropical grasses only (i.e. no legumes were sown). Under grass-only pastures, nitrogen (N) mineralisation rates decline with time since establishment as N is 'tied-up' in soil organic matter. This process leads to a significant decline in pasture and animal productivity and is commonly called 'pasture rundown'. Incorporating pasture legumes has been identified as the best long-term solution to improve the productivity of rundown sown grass pastures. Pasture legumes require adequate P to grow well and fix large amounts of N to increase the productivity of rundown sown grass pastures. Producers and farm advisors have traditionally thought that P fertiliser is not cost-effective for legume-based improved pastures growing on inland areas of Queensland despite there being little, if any, data on production responses or their economic outcomes. Recent studies show large and increasing areas of low plant available soil P and large responses by pasture legumes to P fertiliser on Brigalow soils. The economic analysis in this scoping study indicates potential returns of 9–15% on extra funds invested from the application of P fertiliser, when establishing legumes into grass pastures on low P soils (i.e. lower than the critical P requirement of the legume grown). Higher returns of 12–24% may be possible when adding P fertiliser to already established grass/legume pastures on such soils. As these results suggest potential for significant returns from applying P fertiliser on legume pastures, it is recommended that research be conducted to better quantify the impacts of P fertiliser on productivity and profit. Research priorities include: quantifying the animal production and economic impact of fertilising legume-based pastures in the sub-tropics for currently used legumes; quantifying the comparative P requirements and responses of available legume varieties; understanding clay soil responses to applied P fertiliser; testing the P status of herds grazing in the Brigalow Belt; and quantifying the extent of other nutrient deficiencies (e.g. sulphur and potassium) for legume based pastures. Development and extension activities are required to demonstrate the commercial impacts of applying P fertiliser to legume based pastures.