52 resultados para outbreak detection
Resumo:
The aim of the project is to reduce the risk of serious damage by exotic pests to the valuable timber resources of Fiji, Vanuatu and Australia by establishing efficient detection systems for target pests in high hazard sites. In particular, the project aims to minimise losses in the valuable plantations of Fiji and the emerging plantation industry of Vanuatu. This is part of a 'neighbourhood watch' approach to incursion management that will benefit all regional countries, including Australia.
Resumo:
Developing molecular diagnostics for the detection of strawberry viruses.
Resumo:
A multiplex real-time PCR was developed for the detection and differentiation of two closely related bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5). The multiplex real-time PCR combines a duplex real-time PCR that targets the DNA polymerase gene of BoHV-1 and BoHV-5 and a real-time PCR targeting mitochondrial DNA, as a house-keeping gene, described previously by Cawthraw et al. (2009). The assay correctly identified 22 BoHV-1 and six BoHV-5 isolates from the Biosecurity Sciences Laboratory virus collection. BoHV-1 and BoHV-5 were also correctly identified when incorporated in spiked semen and brain tissue samples. The detection limits of the duplex assay were 10 copies of BoHV-1 and 45 copies of BoHV-5. The multiplex real-time PCR had reaction efficiencies of 1.04 for BoHV-1 and 1.08 for BoHV-5. Standard curves relating Ct value to template copy number had correlation coefficients of 0.989 for BoHV-1 and 0.978 for BoHV-5. The assay specificity was demonstrated by testing bacterial and viral DNA from pathogens commonly isolated from bovine respiratory and reproductive tracts. The validated multiplex real-time PCR was used to detect and differentiate BoHV-1 and BoHV-5 in bovine clinical samples with known histories.
Resumo:
Until August 2007, Australia was one of only three countries internationally recognised to be free of equine influenza (EI). This report documents the diagnosis of the first cases of EI in Australian horses and summarises the investigations that took place over the next 5 days. During that time, a multifocal outbreak was identified across eastern New South Wales and south-eastern Queensland. The use of an influenza type A pan-reactive real-time reverse transcription polymerase chain reaction allowed rapid confirmation of suspect cases of EI.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
The equine influenza (EI) outbreak presented many challenges that required high-level coordination and decision making, as well as the development of new approaches for satisfactory and consistent resolution. This paper outlines the elements of the national coordination arrangements, preparatory arrangements in place prior to the outbreak that facilitated national coordination, and some of the issues faced and resolved in the response.
Resumo:
Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking log of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value = 1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In 1955 a severe wilt disease occurring on ginger in the Near North Coast district of Queensland was incorrectly attributed to infection by a Fusarium sp., and later shown to be caused by a strain of Ralstonia solanacearum, now reclassified as R. sequeirae. The disease was brought from China into Australia on latently infected rhizomes, and possibly also with associated soil. Several DNA-based diagnostic methods have shown that the pathogen causing bacterial wilt of ginger in parts of China is indistinguishable from the pathogen uniquely associated with the disease in Queensland. © 2012 Australasian Plant Pathology Society Inc.
Resumo:
The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis-positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glasser disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis-positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates.
Resumo:
Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Ruppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S.agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S.agalactiae; genotyping of selected S.agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S.agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia.
Resumo:
In 2011, an outbreak of the quarantine-regulated pathogen Potato spindle tuber viroid (PSTVd) occurred in a commercial glasshouse-grown tomato crop in Queensland, Australia. Phylogenetic studies showed that the genotype of this isolate grouped in a cluster of PSTVd genotypes from tomato and Physalis peruviana, and exhibited an interesting mutation (U257→A) that has previously been linked to lethal symptom expression in tomato. Transmission studies showed that the viroid could be mechanically transmitted from crushed fruit sap, but not from undamaged fruits. A low rate of asymptomatic infection was determined for plants in the affected glasshouse, demonstrating the efficacy of using symptoms to detect PSTVd infections in tomato. No PSTVd infections were detected in solanaceous weeds located outside of the infected glasshouse, excluding them from playing a role in the viroid epidemiology. Monitoring and subsequent testing of new tomato crops grown in the facility demonstrated successful eradication of the pathogen. A trace-back analysis linked the outbreak of PSTVd to an infected imported tomato seed-lot, indicating that PSTVd is transmitted internationally through contaminated seed
Resumo:
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.
Resumo:
The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.
Resumo:
ObjectivesTo compare the sensitivity of inspections of cattle herds and adult fly trapping for detection of the Old World screw-worm fly (OWS). ProceduresThe incidence of myiases on animals and the number of OWS trapped with LuciTrap (R)/Bezzilure were measured concurrently on cattle farms on Sumba Island (Indonesia) and in peninsular Malaysia (two separate periods for the latter). The numbers of animal inspections and traps required to achieve OWS detection at the prevalent fly densities were calculated. ResultsOn Sumba Island, with low-density OWS populations, the sensitivity of herd inspections and of trapping for OWS detection was 0.30 and 0.85, respectively. For 95% confidence of detecting OWS, either 45 inspections of 74 animals or trapping with 5 sets of 4 LuciTraps for 14 days are required. In Malaysia, at higher OWS density, herd inspections of 600 animals (twice weekly, period 1) or 1600 animals (weekly, period 2) always detected myiases (sensitivity = 1), while trapping had sensitivities of 0.89 and 0.64 during periods 1 and 2, respectively. For OWS detection with 95% confidence, fewer than 600 and 1600 animals or 2 and 6 LuciTraps are required in periods 1 and 2, respectively. ConclusionsInspections of cattle herds and trapping with LuciTrap and Bezzilure can detect OWS populations. As a preliminary guide for OWS detection in Australia, the numbers of animals and traps derived from the Sumba Island trial should be used because the prevailing conditions better match those of northern Australia.