138 resultados para genetic relationships
Resumo:
Recent studies have suggested that bats are the natural reservoir of a range of coronaviruses (CoVs), and that rhinolophid bats harbor viruses closely related to the severe acute respiratory syndrome (SARS) CoV, which caused an outbreak of respiratory illness in humans during 2002-2003. We examined the evolutionary relationships between bat CoVs and their hosts by using sequence data of the virus RNA-dependent RNA polymerase gene and the bat cytochrome b gene. Phylogenetic analyses showed multiple incongruent associations between the phylogenies of rhinolophid bats and their CoVs, which suggested that host shifts have occurred in the recent evolutionary history of this group. These shifts may be due to either virus biologic traits or host behavioral traits. This finding has implications for the emergence of SARS and for the potential future emergence of SARS-CoVs or related viruses.
Resumo:
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Φ = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Compared to grain sorghums, sweet sorghums typically have lower grain yield and thick, tall stalks which accumulate high levels of sugar (sucrose, fructose and glucose). Unlike commercial grain sorghum (S. bicolor ssp. bicolor) cultivars, which are usually F1 hybrids, commercial sweet sorghums were selected as wild accessions or have undergone limited plant breeding. Although all sweet sorghums are classified within S. bicolor ssp. bicolor, their genetic relationship with grain sorghums is yet to be investigated. Ninety-five genotypes, including 31 sweet sorghums and 64 grain sorghums, representing all five races within the subspecies bicolor, were screened with 277 polymorphic amplified fragment length polymorphism (AFLP) markers. Cluster analysis separated older sweet sorghum accessions (collected in mid 1800s) from those developed and released during the early to mid 1900s. These groups were emphasised in a principle component analysis of the results such that sweet sorghum lines were largely distinguished from the others, particularly by a group of markers located on sorghum chromosomes SBI-08 and SBI-10. Other studies have shown that QTL and ESTs for sugar-related traits, as well as for height and anthesis, map to SBI-10. Although the clusters obtained did not group clearly on the basis of racial classification, the sweet sorghum lines often cluster with grain sorghums of similar racial origin thus suggesting that sweet sorghum is of polyphyletic origin within S. bicolor ssp. bicolor.
Resumo:
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.
Resumo:
Two pot experiments were conducted in two different seasons at the University of Agricultural Science, Bangalore, India, to study (a) the relationship between chlorophyll concentration (by measuring the leaf light-transmittance characteristics using a SPAD metre) and transpiration efficiency (TE) and (b) the effect of leaf N on chlorophyll and TE relationship in peanut. In Experiment (Expt) I, six peanut genotypes with wide genetic variation for the specific leaf area (SLA) were used. In Expt II, three non-nodulating isogenic lines were used to study the effect of N levels on leaf chlorophyll concentration–TE relationship without potential confounding effects in biological nitrogen fixation. Leaf N was manipulated by applying N fertiliser in Expt II. Chlorophyll concentration, TE (g dry matter kg−1 of H2O transpired, measured using gravimetric method), specific leaf nitrogen (g N m−2, SLN), SLA (cm2 g−1), carbon isotope composition (Δ13C) were determined in the leaves sampled during the treatment period (35–55 days after sowing) in the two experiments. Results showed that the leaf chlorophyll concentration expressed as soil plant analytical development (SPAD) chlorophyll metre reading (SCMR) varied significantly among genotypes in Expt I and as a result of N application in Expt II. Changes in leaf N levels were strongly associated with changes in SCMR, TE and Δ13C. In both the experiments, a significant positive relationship between SCMR and TE with similar slopes but differing intercepts was noticed. However, correction of TE for seasonal differences in vapour pressure deficit (VPD) between the two experiments resulted in a single and stronger relationship between SCMR and TE. There was a significant inverse relationship between SCMR and Δ13C, suggesting a close linkage between chlorophyll concentration and Δ13C in peanut. This study provides the first evidence for a significant positive relationship between TE and leaf chlorophyll concentration in peanut. The study also describes the effect of growing environment on the relationships among SLA, SLN and SCMR.
Resumo:
Taro (Colocasia esculenta) accessions were collected from 15 provinces of Papua New Guinea (PNG). The collection, totalling 859 accessions was collated for characterization and a core collection of 81 accessions (10%) was established on the basis of characterization data generated on 30 agro-morphological descriptors, and DNA fingerprinting using seven SSR primers. The selection of accessions was based on cluster analysis of the morphological data enabling initial selection of 20% accessions. The 20% sample was then reduced and rationalized to 10% based on molecular data generated by SSR primers. This represents the first national core collection of any species established in PNG based on molecular markers. The core has been integrated with core from other Pacific Island countries, contributing to a Pacific regional core collection, which is conserved in vitro in the South Pacific Regional Germplasm Centre at Fiji. The core collection is a valuable resource for food security of the South Pacific region and is currently being utilized by the breeding programmes of small Pacific Island countries to broaden the genetic base of the crop.
Resumo:
Genetic control of vegetative propagation traits was described for a second-generation, outbred, intersectional hybrid family (N = 208) derived from two species, Corymbia torelliana (F. Muell.) K.D. Hill & L.A.S. Johnson and Corymbia variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, which contrast for propagation characteristics and in their capacity to develop lignotubers. Large phenotypic variances were evident for rooting and most other propagation traits, with significant proportions attributable to differences between clones (broad-sense heritabilities 0.2-0.5). Bare root assessment of rooting rate and root quality parameters tended to have the highest heritabilities, whereas rooting percentage based on root emergence from pots and shoot production were intermediate. Root biomass and root initiation had the lowest heritabilities. Strong favourable genetic correlations were found between rooting percentage and root quality traits such as root biomass, volume, and length. Lignotuber development on a seedling was associated with low rooting and a tendency to poor root quality in cuttings and was in accord with the persistence of species parent types due to gametic phase disequilibrium. On average, nodal cuttings rooted more frequently and with higher quality root systems, but significant cutting type x genotype interaction indicated that for some clones, higher rooting rates were obtained from tips. Low germination, survival of seedlings, and rooting rates suggested strong hybrid breakdown in this family.
Resumo:
Graminicolous downy mildews (GDM) are an understudied, yet economically important, group of plant pathogens, which are one of the major constraints to poaceous crops in the tropics and subtropics. Here we present a first molecular phylogeny based on cox2 sequences comprising all genera of the GDM currently accepted, with both lasting (Graminivora, Poakatesthia, and Viennotia) and evanescent (Peronosclerospora, Sclerophthora, and Sclerospora) sporangiophores. In addition, all other downy mildew genera currently accepted, as well as a representative sample of other oomycete taxa, have been included. It was shown that all genera of the GDM have had a long, independent evolutionary history, and that the delineation between Peronosclerospora and Sclerospora is correct. Sclerophthora was found to be a particularly divergent taxon nested within a paraphyletic Phytophthora, but without support. The results confirm that the placement of Peronosclerospora and Sclerospora in the Saprolegniomycetidae is incorrect. Sclerophthora is not closely related to Pachymetra of the family Verrucalvaceae, and also does not belong to the Saprolegniomycetidae, but shows close affinities to the Peronosporaceae. In addition, all GDM are interspersed throughout the Peronosporaceae s lat., suggesting that a separate family for the Sclerosporaceae might not be justified.
Resumo:
AIM: To genotype bovine herpesvirus type 1 (BHV-1) isolates from cattle in New Zealand. METHODS: Twenty-eight BHV-1 isolates were collected from clinical samples from cattle over 28 years. They were characterised and compared using restriction endonuclease analysis (REA), and polymerase chain reaction (PCR) and DNA sequencing. RESULTS: Twenty-four isolates were classified as bovine herpesvirus subtype 1.2b (BHV-1.2b) by REA. The remaining four isolates were distinct from the others in REA profiles of one of the major enzymes (HindIII) by which the classification was made. However, these four isolates were closely related to others when the REA profiles of other restriction enzymes were studied, and therefore were regarded as divergent strains of BHV-1.2b. All BHV-1 isolates were detectable by PCR, and sequence analysis of selected PCR products did not indicate any significant differences between isolates. CONCLUSION: BHV-1.2b appears to be the predominant strain of BHV-1 in cattle in New Zealand. There was no evidence that more virulent strains of BHV-1, e.g. subtype 1.1 and BHV type 5, are, or have been, present in New Zealand. Genetic variations exist among these BHV-1.2b isolates.
Resumo:
Eight polymorphic microsatellite loci were analysed in six population samples from four locations of the Australian endemic brown tiger prawn, Penaeus esculentus. Tests of Hardy-Weinberg equilibrium were generally in accord with expectations, with only one locus, in two samples, showing significant deviations. Three samples were taken in different years from the Exmouth Gulf. These showed no significant heterogeneity, and it was concluded that they were from a single panmictic population. A sample from Shark Bay, also on the west coast of Australia, showed barely detectable differentiation from Exmouth Gulf (F (ST) = 0 to 0.0014). A northeast sample from the Gulf of Carpentaria showed low (F (ST) = 0.008) but significant differentiation from Moreton Bay, on the east coast. However, Exmouth Gulf/Shark Bay samples were well differentiated from the Gulf of Carpentaria/Moreton Bay (F (ST) = 0.047-0.063). The data do not fit a simple isolation by distance model. It is postulated that the east-west differentiation largely reflects the isolation of east and west coast populations that occurred at the last glacial maximum when there was a land bridge between north-eastern Australia and New Guinea.
Resumo:
The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 × IL7-2 F2 and (IL7-2 × IL7-4) × M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 × IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 × IL7-4) × M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.
Resumo:
Population substructure and hybridization, among other factors, have the potential to cause erroneous associations in linkage disequilibrium (LD) mapping. Two closely related spotted gum eucalypts, Corymbia variegata and C. henryi (Myrtaceae) occur in sympatry in the east coast of Australia and potentially interbreed. They are morphologically similar but are distinguished as separate species based on capsule and foliage size. To determine whether they hybridize in nature and its implications for LD mapping, we investigated the level of molecular divergence between the two species at two sympatric locations separated by 300 kilometres. Very few individuals of intermediate morphology were identified, despite the two species occurring only metres apart. Analysis of genetic structure using 12 microsatellite loci showed that genetic differentiation between populations of the same species at different locations (FST = 0.07 for both species; p = 0.0001) was significantly higher than that observed between species at each location (mean FST = 0.02 and 0.04 for Cherry tree and Bunyaville respectively; p = 0.0001; all Mann-Whitney U-test p ≤ 0.01). No species-specific alleles or significant allele frequency differences were detected within a site, suggesting recurrent local gene flow between the two species. The lack of significant allele frequency differences implies no population stratification along taxonomic lines. This suggested that there is little concern for cryptic hybridization when sampling from sites of sympatry for LD mapping.