44 resultados para fisheries, aquaculture, genetic diversity, Pangasianodon hypophthalamus, Mekong Delta, Vietnam
Resumo:
Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horse-shoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002-2003 and 2003-2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.
Resumo:
Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal-Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.
Resumo:
Based on morphological features alone, there is considerable difficulty in identifying the 5 most economically damaging weed species of Sporobolus [viz. S. pyramidalis P. Beauv., S. natalensis (Steud.) Dur and Schinz, S. fertilis (Steud.) Clayton, S. africanus (Poir.) Robyns and Tourney, and S. jacquemontii Kunth.] found in Australia. A polymerase chain reaction (PCR)-based random amplified polymorphic DNA (RAPD) technique was used to create a series of genetic markers that could positively identify the 5 major weeds from the other less damaging weedy and native Sporobolus species. In the initial RAPD profiling experiment, using arbitrarily selected primers and involving 12 species of Sporobolus, 12 genetic markers were found that, when used in combination, could consistently identify the 5 weedy species from all others. Of these 12 markers, the most diagnostic were UBC51490 for S. pyramidalis and S. natalensis; UBC43310.2000.2100 for S. fertilis and S. africanus; and ORA20850 and UBC43470 for S. jacquemontii. Species-specific markers could be found only for S. jacquemontii. In an effort to understand why there was difficulty in obtaining species-specific markers for some of the weedy species, a RAPD data matrix was created using 40 RAPD products. These 40 products amplified by 6 random primers from 45 individuals belonging to 12 species, were then subjected to numerical taxonomy and multivariate system (NTSYS pc version 1.70) analysis. The RAPD similarity matrix generated from the analysis indicated that S. pyramidalis was genetically more similar to S. natalensis than to other species of the 'S. indicus complex'. Similarly, S. jacquemontii was more similar to S. pyramidalis, and S. fertilis was more similar to S. africanus than to other species of the complex. Sporobolus pyramidalis, S. jacquemontii, S. africanus, and S. creber exhibited a low within-species genetic diversity, whereas high genetic diversity was observed within S. natalensis, S. fertilis, S. sessilis, S. elongates, and S. laxus. Cluster analysis placed all of the introduced species (major and minor weedy species) into one major cluster, with S. pyramidalis and S. natalensis in one distinct subcluster and S. fertilis and S. africanus in another. The native species formed separate clusters in the phenograms. The close genetic similarity of S. pyramidalis to S. natalensis, and S. fertilis to S. africanus may explain the difficulty in obtaining RAPD species-specific markers. The importance of these results will be within the Australian dairy and beef industries and will aid in the development of integrated management strategy for these weeds.
Resumo:
Dhileepan, Raghu and colleagues recently published their paper 'Worldwide phylogeography of the globally invasive plant: Jatropha gossypiifolia' in Proceedings of the 16th Australian Weeds Conference. They used chloroplast microsatellites to establish patterns of phylogeographic structure in the native and introduced range of Jatropha gossypiifolia, and to determine the origin(s) of introductions and the level of genetic diversity present in native and introduced populations. J. gossypiifolia exhibited limited phylogeographic structure in its native range which was best explained by contemporary movement associated with the ornamental plant trade. Multiple introductions from diverse source locations and no reduction in genetic diversity was found in the introduced range which includes Australia, Africa and Asia. These results have implications for our current biocontrol project.
Resumo:
Avian haemophili demonstrating in vitro satellitic growth, also referred to as the V-factor or NAD requirement, have mainly been classified with Avibacterium paragallinarum (Haemophilus paragallinarum), Avibacterium avium (Pasteurella avium), Avibacterium volantium (Pasteurella volantium) and Avibacterium sp. A (Pasteurella species A). The aim of the present study was to assess the taxonomic position of 18 V-factor-requiring isolates of unclassified Haemophilus-like organisms isolated from galliforme, anseriforme, columbiforme and gruiforme birds as well as kestrels and psittacine birds including budgerigars by conventional phenotypic tests and 16S rRNA gene sequencing. All isolates shared phenotypical characteristics which allowed classification with Pasteurellaceae. Haemolysis of bovine red blood cells was negative. Haemin (X-factor) was not required for growth. Maximum-likelihood phylogenetic analysis including bootstrap analysis showed that six isolates were related to the avian 16S rRNA group and were classified as Avibacterium according to 16S rRNA sequence analysis. Surprisingly, the other 12 isolates were unrelated to Avibacterium. Two isolates were unrelated to any of the known 16S rRNA groups of Pasteurellaceae. Two isolates were related to Volucribacter of the avian 16S rRNA group. Seven isolates belonged to the Testudinis 16S rRNA group and out of these, two isolates were closely related to taxa 14 and 32 of Bisgaard, whereas four other isolates were found to form a genus-like group distantly related to taxon 40 and one isolated remained distantly related to other members of the Testudinis group. One isolate was closely related to taxon 26 (a member of Actinobacillus sensu stricto). The study documented major genetic diversity among V-factor-requiring avian isolates beyond the traditional interpretation that they only belong to Avibacterium, underlining the limited value of satellitic growth for identification of avian members of Pasteurellaceae. Our study also emphasized that these organisms will never be isolated without the use of special media satisfying the V-factor requirement.
Resumo:
There are two recognized forms of the disease net blotch of barley: the net form caused by Pyrenophora teres f. teres (PTT) and the spot form caused by P. teres f. maculata (PTM). In this study, amplified fragment length polymorphism analysis was used to investigate the genetic diversity and population structure of 60 PTT and 64 PTM isolates collected across Australia (66 isolates) and in the south-western Cape of South Africa (58 isolates). For comparison, P. tritici-repentis, Exserohilum rostratum and Bipolaris sorokiniana samples were also included in the analyses. Both distance-and model-based cluster analyses separated the PTT and PTM isolates into two strongly divergent genetic groups. Significant variation was observed both among the South African and Australian populations of PTT and PTM and among sampling locations for the PTT samples. Results suggest that sexual reproduction between the two forms is unlikely and that reproduction within the PTT and PTM groups occurs mainly asexually.
Resumo:
Stenotaphrum secundatum (Walter) Kuntze, known as "St Augustinegrass" in the USA and "buffalo grass" in Australia, is a widely used turfgrass species in subtropical and warm temperate regions of the world. Throughout its range, S. secundatum encompasses a great deal of genetic diversity, which can be exploited in future breeding programs. To understand better the range of genetic variation in Australia, morphological-agronomic classification and DNA profiling were used to characterize and group 17 commercial cultivars and 18 naturalized genotypes collected from across Australia. Historically, there have been two main sources of S. secundatum in Austalia: one a reputedly sterile triploid race (the so-called Cape deme) from South Africa now represented by the Australian Common group naturalized in all Australian states; and the other a "normal" fertile diploid race naturalized north from Sydney along the NSW coast, which is referred to here as the Australian Commercial group because it has been the source of most of the new cultivars recently developed in Australia. Over the past 30 years, some US cultivars have also been introduced and commercialized; these are again "normal" fertile diploids, but from a group distinclty different from the Australian Commercial genotypes as shown by both DNA analysis and grouping based on 28 morphological-agronomic characteristics. The implications for future breeding within S. secundatum in Australia are discussed.
Resumo:
Experiments at 2 sites in subtropical eastern Australia investigated the variation in agronomic attributes, quality and genetic structure existing within: naturally-occurring populations of kikuyu ( Pennisetum clandestinum) from within Australia; selections produced from the treatment of Whittet seed with mutagenic chemicals; and available cultivars. Runners were collected from coastal areas extending from Western Australia to the Atherton Tableland in north Queensland. One experiment evaluated 10 mutagenic selections and 4 cultivars in a lattice design and the other evaluated 12 ecotypes and 3 cultivars in a randomised block design. The experimental unit was single plants, which were sown on a 1.5 m grid into a weed-free seed-bed (Mutdapilly) or a killed kikuyu stand (Wollongbar), both of which were kept clear of weeds and other kikuyu plants for the duration of the experiments. Foliage height, forage production and runner yield were assessed. Leaf material was analysed for concentrations of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) and for in vitro dry matter digestibility (IVDDM) in autumn, winter and spring. DNA was extracted from each plant in the ecotype comparison and subjected to a modified DAF (DNA amplification fingerprinting) analysis to determine the level of genetic relatedness. In the first experiment, none of the mutagenic lines derived from Whittet yielded significantly more or was more digestible than commercial Whittet material, although some selections were superior to the other commercial kikuyu cultivars, Noonan and Crofts, and 'common' kikuyu. However, there were significant differences in plant height and runner expansion. In the second experiment, significant differences in plant height, foliage yield, runner development, and leaf CP, ADF, NDF and IVDDM concentrations were demonstrated between the ecotypes, mutagenic selections and cultivars. There was a 4- to 6-fold difference in plant yield and a 6- to 10-fold difference in runner production between the ecotypes at the 2 sites. Quality of the leaf ranged from 200 to 270 g/kg (CP), from 700 to 770 g/kg (IVDDM), from 170 to 250 g/kg (ADF) and from 470 to 550 g/kg (NDF). Improvements in quality and agronomic attributes were not mutually exclusive. Genetic fingerprint analysis of the kikuyu lines indicated that they formed 2 broad groupings. Most of the regional ecotypes were grouped with 'common' kikuyu as represented by the material collected from Wollongbar, and the Beechmont, Atherton Tableland and Gympie ecotypes were grouped with the registered cultivars Whittet, Noonan and Crofts. Two lines produced by mutagenesis from Whittet remained closely linked to Whittet. These results suggest that there was variation between populations of kikuyu in yield, quality and genetic diversity but that mutagenesis by treating seed with sodium azide and diethylene sulphide did not achieve a significant change in the digestibility of leaf over cv. Whittet.
Resumo:
The parasitic protists in the genus Tritrichomonas cause significant disease in domestic cattle and cats. To assess the genetic diversity of feline and bovine isolates of Tritrichomonas foetus (Riedmuller, 1928) Wenrich and Emmerson, 1933, we used 10 different genetic regions, namely the protein coding genes of cysteine proteases 1,2 and 4-9 (CP1, 2, 4-9) involved in the pathogenesis of the disease caused by the parasite. The cytosolic malate dehydrogenase 1 (MDH1) and internal transcribed spacer region 2 of the rDNA unit (ITS2) were included as additional markers. The gene sequences were compared with those of Tritrichomonas suis (Davaine. 1875) Morgan and Hawkins, 1948 and Tritrichomonas mobilensis Culberson et al., 1986. The study revealed 100% identity for all 10 genes among all feline isolates (=T. foetus cat genotype), 100% identity among all bovine isolates (=T. foetus cattle genotype) and a genetic distinctness of 1% between the cat and cattle genotypes of T. foetus. The cattle genotype of T. foetus was 100% identical to T. suis at nine loci (CP1, 2,4-8, ITS2, MDH1). At CP9, three out of four T. suis isolates were identical to the T. foetus cattle genotype, while the T. suis isolate SUI-H3B sequence contained a single unique nucleotide substitution. Tritrichomonas mobilensis was 0.4% and 0.7% distinct from the cat and cattle genotypes of T. foetus, respectively. The genetic differences resulted in amino acid changes in the CP genes, most pronouncedly in CP2, potentially providing a platform for elucidation of genotype-specific host-pathogen interactions of T. foetus. On the basis of this data we judge T. suis and T. foetus to be subjective synonyms. For the first time, on objective nomenclatural grounds, the authority of T. suis is given to Davaine, 1875, rather than the commonly cited Gruby and Delafond, 1843. To maintain prevailing usage of T. foetus, we are suppressing the senior synomym T. suis Davaine, 1875 according to Article 23.9, because it has never been used as a valid name after 1899 and T. foetus is widely discussed as the cause of bovine trichomonosis. Thus bovine, feline and porcine isolates should all be given the name T. foetus. This promotes the stability of T. foetus for the veterinary and economically significant venereal parasite causing bovine trichomonosis. (C) 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Reproductive philopatry in bull sharks Carcharhinus leucas was investigated by comparing mitochondrial (NADH dehydrogenase subunit 4, 797 base pairs and control region genes 837 base pairs) and nuclear (three microsatellite loci) DNA of juveniles sampled from 13 river systems across northern Australia. High mitochondrial and low microsatellite genetic diversity among juveniles sampled from different rivers (mitochondrial fST = 0.0767, P < 0.05; microsatellite FST = -0.0022, P > 0.05) supported female reproductive philopatry. Genetic structure was not further influenced by geographic distance (P > 0.05) or long-shore barriers to movement (P > 0.05). Additionally, results suggest that C. leucas in northern Australia has a long-term effective population size of 11 000-13 000 females and has undergone population bottlenecks and expansions that coincide with the timing of the last ice-ages.
Resumo:
Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis now pose a major problem for the effective protection of stored products worldwide. Here we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management seems to be failing. We investigate what is known about the biology, behavior, and population dynamics of major pest species to ascertain their strengths, and perhaps find weaknesses, as a basis for a rational pest management strategy. We outline the contribution of molecular techniques to clarifying species identification and understanding genetic diversity. We discuss progress in sampling and trapping and our comprehension of spatial distribution of these pests as a foundation for developing management strategies. The effectiveness of various chemical treatments and the availability and potential of nonchemical control methods are critically examined. Finally, we identify research gaps and suggest future directions for research.
Resumo:
We isolated and characterized 21 microsatellite loci in the vulnerable and iconic Australian lungfish, Neoceratodus forsteri. Loci were screened across eight individuals from the Burnett River and 40 individuals from the Pine River. Genetic diversity was low with between one and six alleles per locus within populations and a maximum expected heterozygosity of 0.774. These loci will now be available to assess effective population sizes and genetic structure in N. forsteri across its natural range in South East Queensland, Australia.
Resumo:
Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.
Resumo:
Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich beta- and gamma-kafirins may limit enzymatic access to internally positioned alpha-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in beta-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.