67 resultados para correlation modelling
Resumo:
The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.
Resumo:
Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
The project objective is to undertake paddock modelling across the Great Barrier Reef catchments to determine magnitude of sediment and particulate nutrient reductions from agricultural lands to GBR lagoon achieved over 5 years. Discussions, development and design of a plan (including a monitoring, evaluation, reporting and improvement plan) for GRASP paddock modelling will be undertaken to determine changes in water quality as a result of land management practices adopted by pastoralists. Biophysical outputs will be derived from range of land types, starting conditions and grazing management strategies. GRASP derived outputs will then be incorporated into water models to determine sediment and nutrient estimates for the catchments.
Resumo:
Investigate the feasibility and utility of a macadamia physiological model.
Resumo:
Development of 3D functional structural plant models for macadamias and other tropical fruit and nuts.
Resumo:
Computational Modelling of the Vacuum Drying of Australian Hardwoods.
Resumo:
Increased climate variability and the need to establish production forests at more marginal sites requires an understanding of the mechanisms of drought death in production species so that predictions of growth and survival are robust and defendable.
Resumo:
This project aims to use simulatiion modelling to improve our understanding of the genetics and physiology of complex traits with a view to increasing the rate of genetic gain in plant breeding programs.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
Pasture degradation, particularly that attributable to overgrazing, is a significant problem across the northern Australian rangelands. Although grazing studies have identified the scope for wet season resting strategies to be used to rehabilitate degraded pastures, the economic outcome of these strategies has not been extensively demonstrated. An exploratory study of the prospective economic value of wet season resting is presented using an economic simulation model of a 28000 ha beef enterprise located in the Charters Towers region of north-eastern Australia to explore seven hypothetical scenarios centred on the projected performance of a wet season resting strategy. A series of 20-year simulations for a range of pasture recovery profiles, stocking capacity, animal productivity responses, beef prices and agistment options are compared with a baseline scenario of taking no action. Estimates of the net present value of the 20-year difference in total enterprise gross margins between the various resting options and the 'do nothing' option identify that wet season resting can offer a positive economic return for the range of scenarios examined, although this is contingent on the assumptions that are made concerning the trajectories of change in carrying capacity and animal productivity. Some implications for management and policy making to support the practical implementation of wet season resting strategies are discussed.
Resumo:
The Great Barrier Reef (GBR) is the largest reef system in the world; it covers an area of approximately 2,225,000 km² in the northern Queensland continental shelf. There are approximately 750 reefs that exist within 40 km of the Queensland coast. Recent research has identified that poor water quality is having negative impacts on the GBR (Haynes et al. 2007). The Fitzroy Basin covers 143,000 km² and is the largest catchment draining into the GBR as well as being one of the largest catchments in Australia (Karfs et al. 2009). The Burdekin Catchment is the second largest catchment entering into the GBR and covers 133,432 km².The prime determinant for the changes in water quality entering into the GBR have been attributed to grazing, with beef production the largest single land use industry comprising 90% of the land area (Karfs et al. 2009). Extensive beef production contributes over $1 billion dollars to the national economy annually and employs over 9000 people, many in rural communities (Gordon 2007). ‘Economic modelling of grazing systems in the Fitzroy and Burdekin catchments’ was a joint project with the Fitzroy Basin Association and the Queensland Department of Employment Economic Development and Innovation. The project was formed under the federally funded Caring For Our Country and the Reef Rescue programs. The project objectives were as follows; * Quantifying the costs of over-utilising available pasture and the resulting sediment leaving a representative farm for four of the major land systems in the Burdekin or Fitzroy catchments and identifying economically optimal pasture utilisation rates * Estimating the cost of reducing pasture utilisation rates below the determined optimal * Using this information, guide the selection of appropriate tools to achieve reduced utilisation rates e.g. extension process versus incentive payments or a combination of both * Model the biophysical and economic impacts of altering grazing systems to restore land condition e.g. from C condition to B condition for four land systems in the Burdekin or Fitzroy catchments.
Resumo:
On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.