70 resultados para conservation biology
Resumo:
1. The conservation status of the dingo Canis familiaris dingo is threatened by hybridization with the domestic dog C. familiaris familiaris. A practical method that can estimate the different levels of hybridization in the field is urgently required so that animals below a specific threshold of dingo ancestry (e.g. 1/4 or 1/2 dingoes) can reliably be identified and removed from dingo populations. 2. Skull morphology has been traditionally used to assess dingo purity, but this method does not discriminate between the different levels of dingo ancestry in hybrids. Furthermore, measurements can only be reliably taken from the skulls of dead animals. 3. Methods based on the analysis of variation in DNA are able to discriminate between the different levels of hybridization, but the validity of this method has been questioned because the materials currently used as a reference for dingoes are from captive animals of unproven genetic purity. The use of pre-European materials would improve the accuracy of this method, but suitable material has not been found in sufficient quantity to develop a reliable reference population. Furthermore, current methods based on DNA are impractical for the field-based discrimination of hybrids because samples require laboratory analysis. 4. Coat colour has also been used to estimate the extent of hybridization and is possibly the most practical method to apply in the field. However, this method may not be as powerful as genetic or morphological analyses because some hybrids (e.g. Australian cattle dog × dingo) are similar to dingoes in coat colour and body form. This problem may be alleviated by using additional visual characteristics such as the presence/absence of ticking and white markings.
Resumo:
A small population of tall slender conifers was discovered in 1994 in a deep rainforest canyon of the Wollemi National Park, New SouthWales, Australia. The living trees closely resembled fossils that were more than 65 million years old, and this ‘living fossil’ was recognised as a third extant genus in the Araucariaceae (Araucaria, Agathis and now Wollemia). The species was named the Wollemi pine (W. nobilis). Extensive searches uncovered very few populations, with the total number of adult trees being less than 100. Ex situ collections were quickly established in Sydney as part of the Wollemi Pine Recovery Plan. The majority of the ex situ population was later transferred to our custom-built facility in Queensland for commercial multiplication. Domestication has relied very heavily on the species’ amenability to vegetative propagation because seed collection from the natural populations is dangerous, expensive, and undesirable for conservation reasons. Early propagation success was poor, with only about 25% of cuttings producing roots. However, small increases in propagation success have a very large impact on a domestication program because plant production can be modelled on an exponential curve where each rooted cutting develops into a mother plant that, in turn, provides more rooted cuttings. An extensive research program elevated rooting percentages to greater than 80% and also provided in vitro methods for plant multiplication. These successes have enabled international release of the Wollemi pine as a new and attractive species for ornamental horticulture.
Resumo:
Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.
Resumo:
Promotion of better procedures for releasing undersize fish, advocacy of catch-and-release angling, and changing minimum legal sizes are increasingly being used as tools for sustainable management of fish stocks. However without knowing the proportion of released fish that survive, the conservation value of any of these measures is uncertain. We developed a floating vertical enclosure to estimate short-term survival of released line-caught tropical and subtropical reef-associated species, and used it to compare the effectiveness of two barotrauma-relief procedures (venting and shotline releasing) on red emperor (Lutjanus sebae). Barotrauma signs varied with capture depth, but not with the size of the fish. Fish from the greatest depths (40-52 m) exhibited extreme signs less frequently than did those from intermediate depths (30-40 m), possibly as a result of swim bladder gas being vented externally through a rupture in the body wall. All but two fish survived the experiment, and as neither release technique significantly improved short-term survival of the red emperor over non-treatment we see little benefit in promoting either venting or shotline releasing for this comparatively resilient species. Floating vertical enclosures can improve short-term post-release mortality estimates as they overcome many problems encountered when constraining fish in submerged cages.
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
Seagrass meadows are declining globally at an unprecedented rate, yet these valuable ecosystem service providers remain marginalized within many conservation agendas. In the Indo-Pacific, this is principally because marine conservation priorities do not recognize the economic and ecological value of the goods and services that seagrasses provide. Dependency on coastal marine resources in the Indo-Pacific for daily protein needs is high relative to other regions and has been found in some places to be up to 100%. Habitat loss therefore may have negative consequences for food security in the region. Whether seagrass resources comprise an important contribution to this dependency remains largely untested. Here, we assemble information sources from throughout the Indo-Pacific region that discuss shallow water fisheries, and examine the role of seagrass meadows in supporting production, both directly, and indirectly through process of habitat connectivity (e.g., nursery function and foraging areas). We find information to support the premise that seagrass meadows are important for fisheries production. They are important fishery areas, and they support the productivity and biodiversity of coral reefs. We argue the value of a different paradigm to the current consensus on marine conservation priorities within the Indo-Pacific that places seagrass conservation as a priority.
Resumo:
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi-arid eastern Australia. Vegetation response was influenced by winter-spring drought after establishment of the experiments, but moderate rainfall followed in late summer-autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post-fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once-off nature of the treatment, and the high degree of natural movement and cracking in these shrink-swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla- and Dichanthium-dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).
Resumo:
Sonchus oleraceus (common sowthistle) is a dominant weed and has increased in prevalence in conservation cropping systems of the subtropical grain region of Australia. Four experiments were undertaken to define the environmental factors that favor its germination, emergence, and seed persistence. Seeds were germinated at constant temperatures between 5 and 35C and water potentials between 0 and -1.4 MPa. The maximum germination rate of 86-100% occurred at 0 and -0.2 MPa, irrespective of the temperature when exposed to light (12 h photoperiod light/dark), but the germination rate was reduced by 72% without light. At water potentials of -0.6 to -0.8 MPa, the germination rate was reduced substantially by higher temperatures; no seed germinated at a water potential >-1.0 MPa. Emergence and seed persistence were measured over 30 months following seed burial at 0 (surface), 1, 2, 5, and 10 cm depths in large pots that were buried in a south-eastern Queensland field. Seedlings emerged readily from the surface and 1 cm depth, with no emergence from below the 2 cm depth. The seedlings emerged during any season following rain but, predominantly, within 6 months of planting. Seed persistence was short-term on the soil surface, with 2% of seeds remaining after 6 months, but it increased with the burial depth, with 12% remaining after 30 months at 10 cm. Thus, a minimal seed burial depth with reduced tillage and increased surface soil water with stubble retention has favored the proliferation of this weed in any season in a subtropical environment. However, diligent management without seed replenishment will greatly reduce this weed problem within a short period.
Resumo:
The spotted gum species complex represents a group of four eucalypt hardwood taxa that have a native range that spans the east coast of Australia, with a morphological cline from Victoria to northern Queensland. Of this group, Corymbia citriodora subsp. variegata (CCV) is widespread in south-eastern Queensland and northern New South Wales. It is currently the most commonly harvested native hardwood in Queensland. However, little basic knowledge of the reproductive biology of the species is available to inform genetic improvement and resource management programmes. Here we take an integrative approach, using both field and molecular data, to identify ecological factors important to mating patterns in native populations of CCV. Field observation of pollinator visitation and flowering phenology of 20 trees showed that foraging behaviour of pollinator guilds varies depending on flowering phenology and canopy structure. A positive effect of tree mean flowering effort was found on insect visitation, while bat visitation was predicted by tree height and by the number of trees simultaneously bearing flowers. Moreover, introduced honeybees were observed frequently, performing 73% of detected flower visits. Conversely, nectar-feeding birds and mammals were observed sporadically with lorikeets and honeyeaters each contributing to 11% of visits. Fruit bats, represented solely by the grey-headed flying fox, performed less than 2% of visits. Genotyping at six microsatellite markers in 301 seeds from 17 families sampled from four of Queensland's native forests showed that CCV displays a mixed-mating system that is mostly outcrossing (tm = 0.899 ± 0.021). Preferential effective pollination from near-neighbours was detected by means of maximum-likelihood paternity analysis with up to 16% of reproduction events resulting from selfing. Forty to 48% of fertilising pollen was also carried from longer distance (>60 m). Marked differences in foraging behaviour and visitation frequency between observed pollinator guilds suggests that the observed dichotomy of effective pollen movement in spotted gums may be due to frequent visit from introduced honeybees favouring geitonogamy and sporadic visits from honeyeaters and fruit bats resulting in potential long-distance pollinations.
Resumo:
Lantana camara is a recognized weed of worldwide significance due to its extensive distribution and its impacts on primary industries and nature conservation. However, quantitative data on the impact of the weed on soil ecosystem properties are scanty, especially in SE Australia, despite the pervasive presence of the weed along its coastal and inland regions. Consequently, mineral soils for physicochemical analyses were collected beneath and away from L. camara infestations in four sites west of Brisbane, SE Australia. These sites (hoop pine plantation, cattle farm, and two eucalyptus forests with occasional grazing and a fire regime, respectively) vary in landscape and land-use types. Significant site effect was more frequently observed than effect due to invasion status. Nonetheless, after controlling for site differences, ~50% of the 23 soil traits examined differed significantly between infested and non-infested soils. Moisture, pH, Ca, total and organic C, and total N (but not exchangeable N in form of NO3-) were significantly elevated, while sodium, chloride, copper, iron, sulfur, and manganese, many of which can be toxic to plant growth if present in excess levels, were present at lower levels in soils supporting L. camara compared to soils lacking the weed. These results indicate that L. camara can improve soil fertility and influence nutrient cycling, making the substratum ideal for its own growth and might explain the ability of the weed to outcompete other species, especially native ones.
Resumo:
Microsatellite markers were used to examine spatio-temporal genetic variation in the endangered eastern freshwater cod Maccullochella ikei in the Clarence River system, eastern Australia. High levels of population structure were detected. A model-based clustering analysis of multilocus genotypes identified four populations that were highly differentiated by F-statistics (FST = 0· 09 − 0· 49; P < 0· 05), suggesting fragmentation and restricted dispersal particularly among upstream sites. Hatchery breeding programmes were used to re-establish locally extirpated populations and to supplement remnant populations. Bayesian and frequency-based analyses of hatchery fingerling samples provided evidence for population admixture in the hatchery, with the majority of parental stock sourced from distinct upstream sites. Comparison between historical and contemporary wild-caught samples showed a significant loss of heterozygosity (21%) and allelic richness (24%) in the Mann and Nymboida Rivers since the commencement of stocking. Fragmentation may have been a causative factor; however, temporal shifts in allele frequencies suggest swamping with hatchery-produced M. ikei has contributed to the genetic decline in the largest wild population. This study demonstrates the importance of using information on genetic variation and population structure in the management of breeding and stocking programmes, particularly for threatened species.
Resumo:
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.
Resumo:
Northern Australia is considered to be one of the last strongholds for three critically endangered sawfishes, Pristis zijsron, Pristis clavata, and Pristis microdon, making these populations of global significance. Population structure and levels of genetic diversity were assessed for each species across northern Australia using a portion of the mitochondrial control region. Statistically significant genetic structure was detected in all three species, although it was higher in P. microdon (F-ST = 0.811; N = 149) than in either P. clavata (F-ST = 0.419; N = 73) or P. zijsron (F-ST = 0.202; N = 49), possibly due to a much higher and/or localized level of female philopatry in P. microdon. The overall levels of haplotype diversity in P. zijsron (h = 0.555), P. clavata (h = 0.489), and P. microdon (h = 0.650) were moderate, although it appears to be reduced in the assemblages of P. zijsron and P. clavata in the Gulf of Carpentaria (h = 0.342 and h = 0.083, respectively). Since female migration (replenishment) between regions is unlikely, conservation plans should strive to maintain current levels of diversity and abundances in the regional assemblages of each species.
Resumo:
DEEDI is tendering for this project because it considers that macadamia breeding is essential for long-term industry viability and that new productive cultivars will be the basis for the industry to withstand future competition from overseas and from other nut crops.