42 resultados para application moment
Resumo:
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective. (C) 2012 The Authors Journal of Fish Biology (C) 2012 The Fisheries Society of the British Isles
Resumo:
The off-site transport of agricultural chemicals, such as herbicides, into freshwater and marine ecosystems is a world-wide concern. The adoption of farm management practices that minimise herbicide transport in rainfall-runoff is a priority for the Australian sugarcane industry, particularly in the coastal catchments draining into the World Heritage listed Great Barrier Reef (GBR) lagoon. In this study, residual herbicide runoff and infiltration were measured using a rainfall simulator in a replicated trial on a brown Chromosol with 90–100% cane trash blanket cover in the Mackay Whitsunday region, Queensland. Management treatments included conventional 1.5 m spaced sugarcane beds with a single row of sugarcane (CONV) and 2 m spaced, controlled traffic sugarcane beds with dual sugarcane rows (0.8 m apart) (2mCT). The aim was to simulate the first rainfall event after the application of the photosynthesis inhibiting (PSII) herbicides ametryn, atrazine, diuron and hexazinone, by broadcast (100% coverage, on bed and furrow) and banding (50–60% coverage, on bed only) methods. These events included heavy rainfall 1 day after herbicide application, considered a worst case scenario, or rainfall 21 days after application. The 2mCT rows had significantly (P < 0.05) less runoff (38%) and lower peak runoff rates (43%) than CONV rows for a rainfall average of 93 mm at 100 mm h−1 (1:20 yr Average Return Interval). Additionally, final infiltration rates were higher in 2mCT rows than CONV rows, with 72 and 52 mm h−1 respectively. This resulted in load reductions of 60, 55, 47, and 48% for ametryn, atrazine, diuron and hexazinone from 2mCT rows, respectively. Herbicide losses in runoff were also reduced by 32–42% when applications were banded rather than broadcast. When rainfall was experienced 1 day after application, a large percentage of herbicides were washed off the cane trash. However, by day 21, concentrations of herbicide residues on cane trash were lower and more resistant to washoff, resulting in lower losses in runoff. Consequently, ametryn and atrazine event mean concentrations in runoff were approximately 8 fold lower at day 21 compared with day 1, whilst diuron and hexazinone were only 1.6–1.9 fold lower, suggesting longer persistence of these chemicals. Runoff collected at the end of the paddock in natural rainfall events indicated consistent though smaller treatment differences to the rainfall simulation study. Overall, it was the combination of early application, banding and controlled traffic that was most effective in reducing herbicide losses in runoff. Crown copyright © 2012
Resumo:
Henipaviruses cause fatal infection in humans and domestic animals. Transmission from fruit bats, the wildlife reservoirs of henipaviruses, is putatively driven (at least in part) by anthropogenic changes that alter host ecology. Human and domestic animal fatalities occur regularly in Asia and Australia, but recent findings suggest henipaviruses are present in bats across the Old World tropics. We review the application of the One Health approach to henipavirus research in three locations: Australia, Malaysia and Bangladesh. We propose that by recognising and addressing the complex interaction among human, domestic animal and wildlife systems, research within the One Health paradigm will be more successful in mitigating future human and domestic animal deaths from henipavirus infection than alternative single-discipline approaches. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.
Resumo:
The use of maize simulation models to determine the optimum plant population for rainfed environments allows the evaluation of plant populations over multiple years and locations at a lower cost than traditional field experimentation. However the APSIM maize model that has been used to conduct some of these 'virtual' experiments assumes that the maximum rate of soil water extraction by the crop root system is constant across plant populations. This untested assumption may cause grain yield to be overestimated in lower plant populations. A field experiment was conducted to determine whether maximum rates of water extraction vary with plant population, and the maximum rate of soil water extraction was estimated for three plant populations (2.4, 3.5 and 5.5 plants m(-2)) under water limited conditions. Maximum soil water extraction rates in the field experiment decreased linearly with plant population, and no difference was detected between plant populations for the crop lower limit of soil water extraction. Re-analysis of previous maize simulation experiments demonstrated that the use of inappropriately high extraction-rate parameters at low plant populations inflated predictions of grain yield, and could cause erroneous recommendations to be made for plant population. The results demonstrate the importance of validating crop simulation models across the range of intended treatments. (C) 2013 Elsevier E.V. All rights reserved.
Resumo:
Rarely is it possible to obtain absolute numbers in free-ranging populations and although various direct and indirect methods are used to estimate abundance, few are validated against populations of known size. In this paper, we apply grounding, calibration and verification methods, used to validate mathematical models, to methods of estimating relative abundance. To illustrate how this might be done, we consider and evaluate the widely applied passive tracking index (PTI) methodology. Using published data, we examine the rationality of PTI methodology, how conceptually animal activity and abundance are related and how alternative methods are subject to similar biases or produce similar abundance estimates and trends. We then attune the method against populations representing a range of densities likely to be encountered in the field. Finally, we compare PTI trends against a prediction that adjacent populations of the same species will have similar abundance values and trends in activity. We show that while PTI abundance estimates are subject to environmental and behavioural stochasticity peculiar to each species, the PTI method and associated variance estimate showed high probability of detection, high precision of abundance values and, generally, low variability between surveys, and suggest that the PTI method applied using this procedure and for these species provides a sensitive and credible index of abundance. This same or similar validation approach can and should be applied to alternative relative abundance methods in order to demonstrate their credibility and justify their use.
Resumo:
This guide provides information on how to match nutrient rate to crop needs by varying application rates and timing between blocks, guided by soil tests, crop class, cane variety, soil type, block history, soil conditioners and yield expectations.
Resumo:
Nitrous oxide is the foremost greenhouse gas (GHG)generated by land-applied manures and chemical fertilisers (Australian Government 2013). This research project was part of the National Agricultural Manure Management Program and investigated the potential for sorbers (i.e. specific naturally-occurring minerals) to decrease GHG emissions from spent piggery litter (as well as other manures)applied to soils. The sorbers investigated in this research were vermiculite and bentonite. Both are clays with high cation exchange capacities, of approximately 100–150 cmol/kg Faure 1998). The hypothesis tested in this study was that the sorbers bind ammonium in soil solution thereby suppressing ammonia (NH3)volatilisation and in doing so, slowing the kinetics of nitrate formation and associated nitrous oxide (N2O) emissions. A series of laboratory, glasshouse and field experiments were conducted to assess the sorbers’ effectiveness. The laboratory experiments comprised 64 vessels containing manure and sorber/manure ratios ranging from 1 : 10 to 1 : 1 incorporated into a sandy Sodosol via mixing. The glasshouse trial involved 240 pots comprising manure/sorber incubations placed 5 cm below the soil surface, two soil types (sandy Sodosol and Ferrosol) and two different nitrogen (N) application rates (50 kg N/ha and 150 kg N/ha) with a model plant (kikuyu grass). The field trial consisted of 96, 2 m · 2 m plots on a Ferrosol site with digit grass used as a model plant. Manure/ sorber mixtures were applied in trenches (5 cm below surface) to these plots at increasing sorber levels at anNloading rate of 200 kg/ha. Gas produced in all experiments was plumbed into a purpose-built automated gas analysis (N2O, NH3, CH4, CO2) system. In the laboratory experiments, the sorbers showed strong capacity to decreaseNH3 emissions (up to 80% decrease). Ammonia emissions were close to the detection limit in all treatments in the glasshouse and field trial. In all experiments, considerable N2O decreases (>40%) were achieved by the sorbers. As an example, mean N2O emission decreases from the field trial phase of the project are shown in Fig. 1a. The decrease inGHGemissions brought about by the clays did not negatively impact agronomic performance. Both vermiculite and bentonite resulted in a significant increase in dry matter yields in the field trial (Fig. 1b). Continuing work will optimise the sorber technology for improved environmental and agronomic performance across a range of soils (Vertosol, Dermosol in addition to Ferrosol and Sodosols) and environmental parameters (moisture, temperature, porosity, pH).
Resumo:
Fisheries management agencies around the world collect age data for the purpose of assessing the status of natural resources in their jurisdiction. Estimates of mortality rates represent a key information to assess the sustainability of fish stocks exploitation. Contrary to medical research or manufacturing where survival analysis is routinely applied to estimate failure rates, survival analysis has seldom been applied in fisheries stock assessment despite similar purposes between these fields of applied statistics. In this paper, we developed hazard functions to model the dynamic of an exploited fish population. These functions were used to estimate all parameters necessary for stock assessment (including natural and fishing mortality rates as well as gear selectivity) by maximum likelihood using age data from a sample of catch. This novel application of survival analysis to fisheries stock assessment was tested by Monte Carlo simulations to assert that it provided unbiased estimations of relevant quantities. The method was applied to the data from the Queensland (Australia) sea mullet (Mugil cephalus) commercial fishery collected between 2007 and 2014. It provided, for the first time, an estimate of natural mortality affecting this stock: 0.22±0.08 year −1 .