119 resultados para Tree crops
Resumo:
A self-organising model of macadamia, expressed using L-Systems, was used to explore aspects of canopy management. A small set of parameters control the basic architecture of the model, with a high degree of self-organisation occurring to determine the fate and growth of buds. Light was sensed at the leaf level and used to represent vigour and accumulated basipetally. Buds also sensed light so as to provide demand in the subsequent redistribution of the vigour. Empirical relationships were derived from a set of 24 completely digitised trees after conversion to multiscale tree graphs (MTG) and analysis with the OpenAlea software library. The ability to write MTG files was embedded within the model so that various tree statistics could be exported for each run of the model. To explore the parameter space a series of runs was completed using a high-throughput computing platform. When combined with MTG generation and analysis with OpenAlea it provided a convenient way in which thousands of simulations could be explored. We allowed the model trees to develop using self-organisation and simulated cultural practices such as hedging, topping, removal of the leader and limb removal within a small representation of an orchard. The model provides insight into the impact of these practices on potential for growth and the light distribution within the canopy and to the orchard floor by coupling the model with a path-tracing program to simulate the light environment. The lessons learnt from this will be applied to other evergreen, tropical fruit and nut trees.
Resumo:
The temporal passage of fruit through the supply chain and the selection of consumable fruit by shoppers depend primarily upon fruit firmness. Traditionally, fruit firmness measuring methods, like Effegi and conical probes, are relatively inefficient and destructive. Simple, accurate and non-damaging methods of measuring fruit firmness are ideally required to help assure eating quality to the consumer without fruit wastage. The firmness of 'Hass' avocado fruit at a range of ripening stages was measured with the various different firmness measuring techniques of the Sinclair iQ Firmness Tester (SIQFT), the Electronic Firmometer (EF), the Analogue Firmness Meter (AFM) and hand squeezing. Measurements were made by each method at different points on the same fruit. Destructive bruise assessment was performed 48 h later, thereby allowing sufficient time for fruit to express any bruising resulting from the act of firmness measurements. Non-linear relationships were determined between fruit firmness values measured with the different techniques. The adjusted R2 for the relationship between the SIQFT and the EF was 91.6%. For the SIQFT and the AFM, the adjusted R2 was 73.7%. It was 77.7% for the SIQFT and hand squeezing. A significantly (P<0.05) high incidence of bruising was associated with firmness assessment by the EF as compared with either the SIQFT or the AFM. Among the methods compared, the SIQFT was non-damaging compared with the EF and relatively efficient for measuring the firmness. This instrument merits consideration as a quality control tool of choice in 'Hass' avocado supply chains.
Resumo:
Ten growth or wood-quality traits were assessed in three nearby Corymbia citriodora subsp. variegata (CCV) open-pollinated family-within-provenance trials (18 provenances represented by a total of 374 families) to provide information for the development of a breeding program targeting both pulp and solid-wood products. Growth traits (diameter at breast high over bark [DBH], height and conical volume) were assessed at 3 and 7 years of age. Wood-quality traits (density [DEN], Kraft pulp yield [KPY], modulus of elasticity [MoE] and microfibril angle [MfA]) were predicted using near-infrared spectroscopy on wood samples collected from these trials when aged between 10 and 12 years. The high average KPY, DEN and MoE, and low average MfA observed indicates CCV is very suitable for both pulp and timber products. All traits were under moderate to strong genetic control. In across- trials analyses, high (>0.4) heritability estimates were observed for height, DEN, MoE and MfA, while moderate heritability estimates (0.24 to 0.34) were observed for DBH, volume and KPY. Most traits showed very low levels of genotype × site interaction. Estimated age–age genetic correlations for growth traits were strong at both the family (0.97) and provenance (0.99) levels. Relationships among traits (additive genetic correlation estimates) were favourable, with strong and positive estimates between growth traits (0.84 to 0.98), moderate and positive values between growth and wood-quality traits (0.32 to 0.68), moderate and positive between KPY and MoE (0.64), and high and positive between DEN and MoE (0.82). However, negative (but favourable) correlations were detected between MfA and all other evaluated traits (−0.31 to −0.96). The genetic correlation between the same trait expressed on two different sites, at family level, ranged from 0.24 to 0.42 for growth traits, and from 0.29 to 0.53 for wood traits. Therefore simultaneous genetic improvement of growth and wood property traits in CCV for the target environment in south-east Queensland should be possible, given the moderate to high estimates of heritability and favourable correlations amongst all traits studied, unless genotype × site interactions are greater than was evident. © 2016 NISC (Pty) Ltd
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
The hypothesis that contaminant plants growing amongst chickpea serve as Helicoverpa sinks by diverting oviposition pressure away from the main crop was tested under field conditions. Gain (recruitment) and loss (presumed mortality) of juvenile stages of Helicoverpa spp. on contaminant faba bean and wheat plants growing in chickpea plots were quantified on a daily basis over a 12-d period. The possibility of posteclosion movement of larvae from the contaminants to the surrounding chickpea crop was examined. Estimated total loss of the census population varied from 80 to 84% across plots and rows. The loss of brown eggs (40–47%) contributed most to the overall loss estimate, followed by loss of white eggs (27–35%) and larvae (6–9%). The cumulative number of individuals entering the white and brown egg and larval stages over the census period ranged from 15 to 58, 10–48 and 1–6 per m row, respectively. The corresponding estimates of mean stage-specific loss, expressed as a percentage of individuals entering the stage, ranged from 52 to 57% for white eggs, 87–108% for brown eggs and 71–87% for first-instar larvae. Mean larval density on chickpea plants in close proximity to the contaminant plants did not exceed the baseline larval density on chickpea further away from the contaminants across rows and plots. The results support the hypothesis that contaminant plants in chickpea plots serve as Helicoverpa sinks by diverting egg pressure from the main crop and elevating mortality of juvenile stages. Deliberate contamination of chickpea crops with other plant species merits further investigation as a cultural pest management strategy for Helicoverpa spp.
Resumo:
Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland’s cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an areawide management programme for Helicoverpa spp. is discussed.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months (Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term (30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (No) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of C02 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the WetPPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R^2 = 0.96), although it was <60% of the latter in both sandy and clayey soils. Anaerobically mineralisable N determined by waterlogged incubation of laboratory PPS-amended soil samples increased with increasing application rate of Wet PPS. Anaerobically minemlisable N from field-moist soil was well correlated with net N mineralised during 30 weeks of aerobic leached incubation (R^2 =0.90 sandy soil; R^2=0.93 clay soil). In the clay soil, the amount of mineral N produced from all the laboratory incubations was significantly correlated with field-measured nitrate-N in the soil profile (0-1.5 m depth) after 9 months of weed-free fallow following PPS application. In contrast, only anaerobic mineralisable N was significantly correlated with field nitrate-N in the sandy soil. Anaerobic incubation would, therefore, be suitable as a rapid practical test to estimate potentially mineralisable N following applications of different PPS materials in the field.
Resumo:
Grass and broad-leaved weeds can reduce both yields and product marketability of desmanthus (Desmanthus virgatus) seed crops, even when cultural control strategies are used. Selective herbicides might economically control these weeds, but, prior to this study, the few herbicides tolerated by desmanthus did not control key weed contaminants of desmanthus seed crops. In this study, the tolerance of desmanthus cv. Marc to 55 herbicides used for selective weed control in other leguminous crops was assessed in 1 pot trial and 3 Queensland field trials. One field trial assessed the tolerance of desmanthus seedlings to combinations of the most promising pre-emergent and post emergent herbicides. The pre-emergent herbicides, imazaquin, imazethapyr, pendimethalin, oryzalin and trifluralin, gave useful weed control with very little crop damage. The post-emergent herbicides, haloxyfop, clethodim, propyzamide, carbetamide and dalapon, were safe for controlling grass weeds in desmanthus. Selective post-emergence control of broad-leaved weeds was achieved using bentazone, bromoxynil and imazethapyr. One trial investigated salvaging second-year desmanthus crops from mature perennial weeds, and atrazine, terbacil and hexazinone showed some potential in this role. Overall, our results show that desmanthus tolerates herbicides which collectively control a wide range of weeds encountered in Queensland. These, in combination with cultural weed control strategies, should control most weeds in desmanthus seed crops.
Resumo:
Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued.
Resumo:
Fruit-piercing moths are significant pests of a range of fruit crops throughout much of the world's tropics and subtropics. Feeding damage by the adult moths is most widely reported in varieties of citrus. In the years 2003 and 2004, fruit-piercing moth activity was observed regularly at night in citrus crops in northeast Australia, to determine the level of maturity (based on rind colour) and soundness of fruit attacked. 'Navelina' navel and 'Washington' navel orange, grapefruit and mixed citrus crops were assessed, and fruit was rated and placed into five categories: green, colouring, ripe, overripe and damaged. There were no statistical differences in the percentage of fruit attacked in each category across crops. However, within the individual crops significant proportions of green 'Navelina' fruit (58.7%) and green mixed citrus (57.1%) were attacked in 2004. Among all the crops assessed, 25.1% of moth feeding occurred on overripe or damaged fruit. Crops started to be attacked at least 8 weeks before picking, but in two crops there were large influxes of moths (reaching 27 and 35 moths/100 trees, respectively) immediately before harvest. Moth activity was most intense between late February and late March. Eudocima fullonia (Clerck) represented 79.1% of all moths recorded on fruit, with Eudocima materna (L.), Eudocima salaminia (Cramer) and Serrodes campana (Guen.) the only other species observed capable of inflicting primary damage. Our results suggest that growers should monitor moth activity from 8 weeks before harvest and consider remedial action if moth numbers increase substantially as the crop matures or there is a history of moth problems. The number of fruit pickings could be increased to progressively remove ripe fruit or early harvest of the entire crop contemplated if late influxes of moths are known.
Resumo:
Nezara viridula (L.) is a cosmopolitan, polyphagous heteropteran that causes economic damage to many crop species. At present, control of N. viridula in Australia and other countries relies heavily upon insecticides, most of which are disruptive to beneficial insects, constituting a constraint on integrated pest management (IPM). Much research has been conducted into non-chemical control methods for N. viridula. This paper reviews the potential for and limitations of sterile insect technique, classical, inundative and conservation biological control, and trap cropping. None of these techniques appear to be adequate for control of N. viridula when used alone but there is scope for these non-chemical approaches to be adopted for use in integrated management of this pest. A proposal is given for one such integrated approach for future development. It includes biopesticides, trap crops and carefully targeted habitat manipulation to enhance arthropod natural enemies as well as area-wide management and grower education.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
As part of a feasibility study of the commercialization potential of C. indicum nuts as Agroforestry Tree Products in Papua New Guinea, preliminary characterization studies have examined the tree-to-tree variation in morphological traits (nut and kernel mass and kernel:nut ratio), as well as nutritional (carbohydrate, fat, protein, sodium, vitamin E) and medicinal traits (anti-oxidant activity, anti-inflammatory activity and phenolic content) of kernels from 18 to 72 trees in a small number of different villages of Papua New Guinea (East New Britain Province). There was continuous variation in these traits indicating opportunities for multiple trait cultivar development targeted at food and pharmaceutical markets. Certain traits, for example anti-inflammatory activity, in which tree-to-tree variation was highly significant, present greater opportunities than others, such as saturated:unsaturated fatty acid ratio. This intraspecific variation was greater within populations than between populations. The data presented has allowed the development of a strategy to domesticate C. indicum for cultivation in homegardens and cocoa-coconut agroforests, using a participatory approach aimed at the production of agroforestry tree products (AFTPs) to empower small-holders and enhance their livelihoods and income.
Resumo:
Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.